Math, asked by masoodazarin3868, 10 months ago

Tan inverse ( cos x/ 1- sin x)

Answers

Answered by Anonymous
82

Question :

 \sf \tan {}^{ - 1} (\frac{cos x}{1 - sin x} )

Formula's used :

Trignometric Formulas

1) \sin( \frac{\pi}{2} - x )  =  \cos(x)

2) \cos( \frac{\pi}{2} - x )  =  \sin(x)

3) \sin(2x) = 2 \sin(x) \cos(x)

4) \cos(2x) = 1 - 2 \sin {}^{2} (x)

5) \tan(\frac{\pi}{2}  - x) =  \cot(x)

•Properties of inverse Trignometric Functions

1) \sin {}^{ - 1} (sin x)  = x

2) \cos {}^{ - 1} ( \cos x)  = x

3) \tan {}^{ - 1} (tan x)  = x

Note :

These inverse properties are within the range of inverse Trignometric Functions.

Solution:

 \bf \tan{}^{ - 1}( \dfrac{cosx}{1 - sin x} )

 =  \sf tan {}^{ - 1} ( \frac{sin( \frac{\pi}{2}  - x)}{1 - cos( \frac{\pi}{2}  - x)} )

We know that sin2x = 2sinxcosx

⇒sinx = 2sin(x/2) cos (x/2)

and cos2x= 1-2sin²x

⇒cosx = 1-2sin²(x/2)

_______________________________

 = \tan {}^{ - 1} ( \frac{2 \sin( \frac{\pi}{4}  -  \frac{x}{2} )  \sin( \frac{\pi}{4} -   \frac{x}{2}  ) }{2 \sin {}^{2} ( \frac{\pi}{4}  -  \frac{x}{2}) } )

 = \tan {}^{ - 1}( \frac{\cancel 2 \cancel sin( \frac{\pi}{4} -  \frac{x}{2}) \times  \cos( \frac{\pi}{4}   -  \frac{x}{2}  )}{ \cancel 2 \cancel sin( \frac{\pi}{4}  -  \frac{x}{2} ) \times sin( \frac{\pi}{4}  -  \frac{x}{2} )} )

 =  \tan {}^{ - 1} ( \cot( \frac{\pi}{4}  -  \frac{x}{2} ))

 =  \tan {}^{ - 1} ( \tan( \frac{\pi}{2}  - ( \frac{\pi}{4}  -  \frac{x}{2} ))

we know that tan⁻¹(tanx) = x

 =  \frac{\pi}{2}  -  \frac{\pi}{4}  +  \frac{x}{2}

 =  \frac{\pi}{4}  +  \frac{x}{2}

Therefore,

 \bf \tan {}^{ - 1} ( \dfrac{cosx}{1 - sinx} ) =  \dfrac{\pi}{4}   +  \dfrac{x}{2}

Similar questions