tan inverse((sin x +cos x) ÷(cos x - sin x)
Answers
Answered by
17
step 1: dividing Cos x in both nominator and denominator.
step 2: then the equation comes as
tan inverse((1+tan x)÷(1-tan x))
=tan inverse((tan π/4+ tan x)÷(1-tanx.tanπ/4))
= tan inverse(tan (π/4 + x))
=π/4 +x
step 2: then the equation comes as
tan inverse((1+tan x)÷(1-tan x))
=tan inverse((tan π/4+ tan x)÷(1-tanx.tanπ/4))
= tan inverse(tan (π/4 + x))
=π/4 +x
Answered by
4
Given:
tan inverse((sin x +cos x) ÷(cos x - sin x).
To find:
The value of the given expression.
Solution:
1) First we will divide all terms under tan by cos x.
2) we get the term as
- tan⁻¹((sin x +cos x)/ cos x ÷(cos x - sin x)/cos x)
- tan⁻¹((1 + tan x) ÷(1 - tan x))
- tan⁻¹((tanπ/4 + tan x) ÷(tanπ/4 - tan x))
- tan⁻¹(tan(π/4 + x)
- π/4 + x
tan inverse((sin x +cos x) ÷(cos x - sin x) is π/4 + x
Similar questions