Math, asked by rajkr98, 1 year ago

tan inversecosx/1+sinx​

Answers

Answered by Anonymous
6

Given \:  \: Question \:  \: Is \:  \\  \\  \tan {}^{ - 1} ( \frac{ \cos(x) }{1 +  \sin(x) } )  \\  \\  \tan {}^{ - 1} ( \frac{ \cos {}^{2} ( \frac{x}{2} )  -  \sin {}^{2} ( \frac{x}{2} ) }{( \sin( \frac{x}{2} ) +  \cos( \frac{x}{2} ) ) {}^{2}  } )  \\  \\  \tan {}^{ - 1} ( \frac{ (\cos( \frac{x}{2} ) -  \sin( \frac{x}{2} )  )  \times ( \cos( \frac{x}{2} ) -  \sin( \frac{x}{2} ))  }{( \sin( \frac{x}{2} ) +  \cos( \frac{x}{2} ) ) \times ( \sin( \frac{x}{2} )   +  \cos( \frac{x}{2} ) )} )  \\  \\  \tan {}^{ - 1} ( \frac{ \cos( \frac{x}{2} )  -  \sin( \frac{x}{2} ) }{ \cos( \frac{x}{2} ) +  \sin( \frac{x}{2} ))  } )  \\  \\  \tan {}^{ - 1} ( \frac{ \cos( \frac{x}{2} )(1 -  \frac{ \sin( \frac{x}{2} ) }{ \cos( \frac{x}{2} ) } }{ \cos( \frac{x}{2} ) (1 +  \frac{ \sin( \frac{x}{2} ) }{ \cos( \frac{x}{2} ) } )} )  \\  \\  \tan {}^{ - 1} ( \frac{1 -  \tan( \frac{x}{2} ) }{1 +  \tan( \frac{x}{2} ) } )  \\  \\  \tan {}^{ - 1} (  \tan( \frac{\pi}{4} -  \frac{x}{2}  )  )  \\  \\  =  \frac{\pi}{4}  -  \frac{x}{2}  \\  \\ therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \tan( \frac{  \cos(x)  }{1 +  \sin(x) } )  =  \frac{\pi}{4}  -  \frac{x}{2}  \\  \\ Note \:  \\  \\  \cos(2x)  =  \cos {}^{2} (x)  -  \sin {}^{2} (x)  \\  \\ 1 +  \sin(x)  = ( \sin( \frac{x}{2})  +  \cos( \frac{x}{2} ) ) {}^{2}

Similar questions