Math, asked by Pavan55555, 1 year ago

tan of Cos inverse 4 by 5 + tan inverse 2 by 3

Answers

Answered by mdnawazishalam8
5
Here is solution.......
Attachments:
Answered by mysticd
2

 i )Let \: x = cos^{-1} \big(frac{4}{5} \big)

 \implies cosx = \frac{4}{5} \: --(1)

ii ) sin^{2} x = 1 - cos^{2} x \\= 1 - \big(\frac{4}{5} \big)^{2} \\= 1 - \frac{16}{25} \\= \frac{25-16}{25} \\= \frac{9}{25}\\= \big(\frac{3}{5}\big)^{2}

 Now , sin x = \frac{3}{5} \:--(2)

iii) tan x = \frac{sin x}{cos x } \\= \frac{\frac{3}{5}}{\frac{4}{5}} \\= \frac{3}{5} \: --(3)

iv) \red{ Value \: of \: tan \Big( cos^{-1} \big(\frac{4}{5}\big) + tan^{-1}\big(\frac{2}{3}\big) \Big) }

 = tan \Big( tan^{-1} \frac{3}{4} + tan^{-1} \frac{2}{3} \Big)

 = tan\Big(tan^{-1} \frac{\frac{3}{4} + \frac{2}{3}}{ 1 - \frac{3}{4} \times \frac{2}{3}} \Big)

 = \frac{ \frac{3}{4} + \frac{2}{3}}{ 1 - \frac{3}{4} \times \frac{2}{3} } \\= \frac{\frac{9+8}{12}}{\frac{12-6}{12}}

 = \frac{17}{6}

Therefore.,

 \red{ Value \: of \: tan \Big( cos^{-1} \big(\frac{4}{5}\big) + tan^{-1}\big(\frac{2}{3}\big) \Big) }

 \green {= \frac{17}{6} }

•••♪

Similar questions