Math, asked by reemag257, 1 year ago

Tan(p+q) = cot (p-q ) =1 find sin(2p+q )

Answers

Answered by jitekumar4201
0

Answer:

Sin(2p + q) = 1

Step-by-step explanation:

Given that-

tan(p + q) = cot(p - q) = 1

So, tan(p + q) = 1

We know that-

tan\dfrac{\pi }{4} = 1

So, tan(p+q) = tan\dfrac{\pi }{4}

p + q = \dfrac{\pi }{4}      ----------- 1

Now, cot(p - q) = 1

We know that-

cot\dfrac{\pi }{4} = 1

So, cot(p-q) = cot\dfrac{\pi }{4}

p - q = \dfrac{\pi }{4}      ------------------ 2

Adding equation 1 and 2,

We get,

2p = \dfrac{\pi }{4}+ \dfrac{\pi }{4}

2p = \dfrac{\pi }{2}

p = \dfrac{\pi }{4}

Put the value of p in equation 1,

We get, q = 0

Now, sin(2p+q)

= sin[2(\dfrac{\pi }{4}) + 0]

= sin\dfrac{\pi }{2}

= 1

Hence, Sin(2p + q) = 1

Similar questions