Tan (pi/24).tan (3pi/24).tan (5pi/24).tan (7pi/24).tan (9pi/24).tan (11pi/24).tan (13pi/24)=
Answers
Given: The trigonometric equation : Tan (pi/24).tan (3pi/24).tan (5pi/24).tan (7pi/24).tan (9pi/24).tan (11pi/24).tan (13pi/24)
To find: The value of given expression.
Solution:
- Now we have given :
tan(π/24).tan (3π/24).tan (5π/24).tan (7π/24).tan(9π/24). tan(11π/24) .tan (13π/24)
- Now we know that tan x = cot(90 - x)
So tan (π/24) = cot(90 - π/24) = cot(11π/24)
- Similarly:
tan (3π/24) = cot (90 - 3π/24) = cot(9π/24)
- Similarly:
tan (5π/24) = cot (90 - 5π/24) = cot(7π/24)
- Now substituting in given expression, we get:
cot(11π/24) cot(9π/24).cot(7π/24).tan (7π/24).tan(9π/24).tan(11π/24). tan (13π/24)
- Rearranging the terms, we get:
cot(11π/24)tan(11π/24) x cot(9π/24)tan(9π/24) x cot(7π/24) tan(7π/24) x tan (13π/24)
- Now we know that ( tan x )( cot x ) = 1, so:
1 x 1 x 1 x tan (13π/24)
tan (13π/24)
Answer:
So the final value comes out to be tan (13π/24)
Answer: