Math, asked by lasya259, 1 year ago

tan(pi/4+theta).tan(3pi/4+theta)

Answers

Answered by samanviakshaj
6

Step-by-step explanation:

please mark me as brain list

Attachments:
Answered by abhay22lm
1

Answer:

The value   tan(\pi /4 + \theta).tan(3\pi /4+\theta) is -1

Step-by-step explanation:

We have an expression tan(\pi /4 + \theta).tan(3\pi /4+\theta) and we have to calculate the value of this expression by using trigonometrical properties

Step 1 of 2

For solving the above expression we have to use the following identity

Tan (A+B)=\frac{Tan A+ Tan B}{1-TanA Tan B}

and here when we use this property for

tan(\pi /4 + \theta) ,andtan(3\pi /4+\theta) then we can write the expression as

Step 2 of 2

tan(\pi /4 + \theta).tan(3\pi /4+\theta)=[\frac{tan\p(\pi /4) +tan\theta}{1-tan(\pi /4)tan\theta}]*[\frac{tan(3\pi /4)+tan \theta}{1-tan(3\pi /4)tan\theta}

now

tan(45)=1\\and tan(135)=-1 then

tan(\pi /4 + \theta).tan(3\pi /4+\theta)=\frac{1+tan\theta}{1-tan\theta}*\frac{-1+tan\theta}{1+tan\theta}

tan(\pi /4 + \theta).tan(3\pi /4+\theta)=-1

Hence the solution of the expression tan(\pi /4 + \theta).tan(3\pi /4+\theta) is -1

Similar questions