Tan (pi/4 + x) = 1 + tan x/1 - tanx
Answers
Answered by
4
Prove:
tan ( π / 4 + x ) = ( 1 + tanx ) / ( 1 - tanx )
_______________________________
SOLVE L.H.S :
_______________________________
use formula:
tan ( A + B )
=( tanA + tanB ) /( 1 - tanA tanB )
_______________________________
tan ( π /4 + x )
= (tan π/4 + tanx )/ (1 - tan π/4 tanx)
= (tan180 /4 + tanx )/ ( 1 - tan180/4 tanx )
= (tan45° + tan x )/ (1 - tan45° tanx)
= 1 + tanx / 1 - ( 1) tanx
= 1 + tanx / 1 - tanx = R.H.S
_______________________________
L.H.S = R.H.S , hence proved.
_______________________________
tan ( π / 4 + x ) = ( 1 + tanx ) / ( 1 - tanx )
_______________________________
SOLVE L.H.S :
_______________________________
use formula:
tan ( A + B )
=( tanA + tanB ) /( 1 - tanA tanB )
_______________________________
tan ( π /4 + x )
= (tan π/4 + tanx )/ (1 - tan π/4 tanx)
= (tan180 /4 + tanx )/ ( 1 - tan180/4 tanx )
= (tan45° + tan x )/ (1 - tan45° tanx)
= 1 + tanx / 1 - ( 1) tanx
= 1 + tanx / 1 - tanx = R.H.S
_______________________________
L.H.S = R.H.S , hence proved.
_______________________________
Similar questions