Math, asked by nitishknk5735, 9 months ago

tan( pie/4+ x/2)= (1+sinx/1-sinx)^1/2

Answers

Answered by rajeevr06
1

Answer:

RHS

 \sqrt{ \frac{1 + sin \: x}{1 - sin \: x} }  =  \sqrt{ \frac{ \cos {}^{2} ( \frac{x}{2} )  + \sin {}^{2} ( \frac{x}{2} ) + 2 \sin( \frac{x}{2} )  \cos( \frac{x}{2} )   }{ \cos {}^{2} ( \frac{x}{2} ) +  \sin {}^{2} ( \frac{x}{2} )   - 2 \sin( \frac{x}{2} )  \cos( \frac{x}{2} ) } }  =

 \sqrt{ \frac{( \cos( \frac{x}{2} ) +  \sin( \frac{x}{2} )) {}^{2}   }{ (\cos( \frac{x}{2} ) -  \sin( \frac{x}{2} )) {}^{2}   } }  =  \frac{ \cos( \frac{x}{2} )  +  \sin( \frac{x}{2} ) }{ \cos( \frac{x}{2} )  -  \sin( \frac{x}{2} )  }  =

now dividing nr. & dn. by cos(x/2)...

 \frac{1 +  \tan( \frac{x}{2} ) }{1 -  \tan( \frac{x}{2} ) }  =  \frac{ \tan( \frac{\pi}{4} ) +  \tan( \frac{x}{2} )  }{1 -  \tan( \frac{\pi}{4} )  \tan( \frac{x}{2} ) }  =

 \tan( \frac{\pi}{4}  +  \frac{x}{2} )  \:  \:  \: proved

if u think this is helpful for you then Mark it BRAINLIEST Please.. Thanks

Similar questions