Tan( pie/4+x)/tan(pie/4-x)=(1+tan x/1-tan x) 2
Answers
Answered by
2
tan(pi/4 + x) ÷ tan(pi/4 — x)
= [{tan(pi/4)+tanx}÷{1—tan(pi/4) tanx}] ÷ [{tan(pi/4)—tanx}÷{1+tan(pi/4)tanx}]
=[(1+tanx)÷(1—tanx)]/[(1—tanx)÷(1+tanx)]
=[(1+tanx)÷(1—tanx)]×[(1+tanx)÷(1—tanx)]
=(1+tanx)²÷(1—tanx)²
= [{tan(pi/4)+tanx}÷{1—tan(pi/4) tanx}] ÷ [{tan(pi/4)—tanx}÷{1+tan(pi/4)tanx}]
=[(1+tanx)÷(1—tanx)]/[(1—tanx)÷(1+tanx)]
=[(1+tanx)÷(1—tanx)]×[(1+tanx)÷(1—tanx)]
=(1+tanx)²÷(1—tanx)²
Similar questions