Tan power 2 thetha sin power 2 thetha =tan power 2 thetha minus sin power 2 thetha
Answers
Answered by
1
To prove:- tan²Θ Sin²Θ = tan²Θ - Sin²Θ
LHS: tan²Θ Sin²Θ = Sin²Θ (1 - Cos²Θ) / Cos²Θ
= (Sin²Θ - Sin²Θ Cos²Θ) / Cos²Θ
= Sin²Θ / Cos²Θ - Sin²Θ Cos²Θ / Cos²Θ
= tan²Θ - Sin²Θ = RHS
Hence proved
Formulas - tanΘ = SinΘ/CosΘ, Sin²Θ = 1 - Cos²Θ
Hope I helped
Similar questions