tan s+ sec s -1 ÷tans - sec s + 1 = 1+ sin s ÷ cos s
Answers
Answer:
Step-by-step explanation:
Formula used:
Now,
Answer:
Proved
(Tan s + Sec s - 1)/(Tan s - Sec s + 1) = (1 + Sin s)/Cos s
Step-by-step explanation:
Question is
(Tan s + Sec s - 1)/(Tan s - Sec s + 1) = (1 + Sin s)/Cos s
LHS
= (Tan s + Sec s - 1)/(Tan s - Sec s + 1)
multiplying numerator & Denominator by Cos s
= (Sin s + 1 - Cos s)/(Sin s - 1 + Cos s)
= ( (Sin s - Cos s) + 1) / ( (Sin s + Cos s) - 1)
now Dividing & Multiplying with (Sin s + Cos s ) + 1
= (Sin² s - Cos² s + Sin s - Cos s + Sin s + cos s + 1) / (Sin² s + Cos² s + 2Sin s Cos s - 1)
Using Sin² s + Cos² s = 1
= ( Sin² s + 2Sin s + (1 - Cos² s) ) /( 1 + 2 Sin s Cos s - 1)
= ( Sin² s + 2Sin s + Sin² s ) /(2 Sin s Cos s)
= ( 2Sin² s + 2Sin s) /(2 Sin s Cos s)
Cancelling 2 Sin s from numerator Denominator
= (Sin s + 1 )/ Cos s
= (1 + Sin s)/ Cos s
= RHS
QED