tanθ/secθ+1+secθ+1/tanθ=2cosecθ prove that
Answers
Answered by
1
Answer:
Step-by-step explanation:
anθ = secθ/cosecθ
sec²θ - 1 = tan²θ
Q: tanθ/(secθ - 1) + tanθ/(secθ + 1) = 2cosecθ
L.H.S : tanθ/(secθ - 1) + tanθ/(secθ + 1)
On rationalizing :
tanθ/(secθ - 1) × (secθ + 1)/(secθ + 1) + tanθ/(secθ + 1) × (secθ - 1)/(secθ - 1)
= tanθ(secθ + 1)/secθ² - 1 + tanθ(secθ - 1)/sec²θ - 1
= tanθ(secθ + 1)/tan²θ + tanθ(secθ - 1)/tan²θ
= (secθ + 1)/tanθ + (secθ - 1)tanθ
= secθ/tanθ + 1/tanθ + secθ/tanθ - 1/tanθ
= 2secθ/tanθ
= (2secθ × cosecθ)/secθ
= 2cosecθ = R.H.S
Hence, Proved
Similar questions