Math, asked by kalitanitali5216, 9 months ago

Tan+sec-1/tan+sec+1 = 1-sin/cos

Answers

Answered by amitkumar44481
5

Correct Question :

Tan A +Sec A - 1/Tan A + Sec A + 1 = 1 + Sin A /Cos A = Cos A / 1 - Sin A

Solution :

Taking LHS,

  \tt\dagger \:  \:  \:  \:  \: \dfrac{\tan A + \sec A - 1 }{\tan A - \sec A + 1 }

 \tt  \big\langle  \:  \:  \:  \:  \:  \: 1 +  { \tan }^{2}  \theta =  { \sec }^{2}  \theta.

  \tt\longmapsto \dfrac{\tan A + \sec A - ( { \sec}^{2}A -  { \tan }^{2}A ) }{\tan A - \sec A + 1 }

 \tt \big\langle  \:  \:  \:  \:  \:  \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

  \tt\longmapsto \dfrac{\tan A + \sec A - ( \tan A   +  \sec A )( \tan A  -  \sec A)  }{\tan A - \sec A + 1 }

Taking Common,

   \tt \longmapsto \dfrac{\tan A + \sec A [ 1 -  (\sec A -  \tan A  ) ]}{\tan A - \sec A + 1  }

  \tt\longmapsto \dfrac{\tan A + \sec A (1 -  \sec A  +   \tan A  ) }{\tan A - \sec A + 1 }

  \tt\longmapsto \tan A + \sec A

 \tt \longmapsto  \dfrac{ \sin A }{ \cos A }  +  \dfrac{1}{ \cos A }

 \tt \longmapsto  \dfrac{ \sin A  + 1}{ \cos A }

\rule{120}1

Now,

Rationalizing the denominator.

 \tt \longmapsto  \dfrac{ \sin A + 1}{ \cos A}

 \tt \longmapsto  \dfrac{ \sin A  + 1}{ \cos A }  \times \dfrac{ \cos A}{ \cos A }

 \tt \longmapsto  \dfrac{ \cos A(\sin A + 1)}{ {\cos}^2 A}

 \tt \longmapsto  \dfrac{ \cos A(\sin A + 1)}{ 1 - {\sin}^2 A}

 \tt \longmapsto  \dfrac{ \cos A(\sin A + 1)}{( 1 - \sin A )( 1 + \sin A )}

 \tt \longmapsto  \dfrac{ \cos A }{ 1 - \sin A}

LHS = RHS.

Hance Proved.

Similar questions