Tanθ+secθ-1/tanθ-secθ+1=secθ+tanθ. Please prove this the first one will be marked brainiest
Answers
Answered by
1
Step-by-step explanation:
LHS =
tanθ−secθ−1
tanθ+secθ−1
=
tanθ−secθ
tanθ+secθ−sec
2
θ+tan
2
θ
=
(tanθ−secθ)
(tanθ+secθ)−(secθ+tanθ)(secθ−tanθ)
=
(tanθ−secθ+1)
(tanθ+secθ)(1−secθ+tanθ)
=tanθ+secθ (RHS)
(proved)
please mark me as a brainliest
Answered by
1
Answer:
LHS =
tanθ−secθ−1
tanθ+secθ−1
=
tanθ−secθ
tanθ+secθ−sec
2
θ+tan
2
θ
=
(tanθ−secθ)
(tanθ+secθ)−(secθ+tanθ)(secθ−tanθ)
=
(tanθ−secθ+1)
(tanθ+secθ)(1−secθ+tanθ)
=tanθ+secθ (RHS)
(proved)
pls mark brainliest
Similar questions