Math, asked by Ankitshrivastava, 1 year ago

tan square A minus tan square B equals to sin square A minus sin square B / cos square A cos square B

Answers

Answered by atreyee261
623
the solution is in the photo...if it helps pls mark me brainliest.
Attachments:
Answered by sharonr
60

tan square A minus tan square B equals to sin square A minus sin square B / cos square A cos square B

Solution:

We have to prove :-

\tan ^{2} A-\tan ^{2} B=\frac{\sin ^{2} A-\sin ^{2} B}{\cos ^{2} A \times \cos ^{2} B}

Now let us solve L.H.S

\mathrm{LH.S}=\tan ^{2} \mathrm{A}-\tan ^{2} \mathrm{B}

We know that,

\tan \theta=\frac{\sin \theta}{\cos \theta}

\tan ^{2} A-\tan ^{2} B=\frac{\sin ^{2} A}{\cos ^{2} A}-\frac{\sin ^{2} B}{\cos ^{2} B}

On cross-multiplication we get,

=\frac{\sin ^{2} A \times \cos ^{2} B-\sin ^{2} B \times \cos ^{2} A}{\cos ^{2} A \times \cos ^{2} B}

\begin{array}{l}{\text { since, } \sin ^{2} A+\cos ^{2} A=1} \\\\ {\Rightarrow \cos ^{2} A=1-\sin ^{2} A}\end{array}

Applying these we get,

=\frac{\sin ^{2} A \times\left(1-\sin ^{2} B\right)-\sin ^{2} B \times\left(1-\sin ^{2} A\right)}{\cos ^{2} A \times \cos ^{2} B}

On simplification we get,

=\frac{\left.\sin ^{2} A-\sin ^{2} A \times \sin ^{2} B-\sin ^{2} B+\sin ^{2} B \times \sin ^{2} A}{\cos ^{2} A \times \cos ^{2} B}

On cancelling common terms, we get

=\frac{\sin ^{2} A-\sin ^{2} B}{\cos ^{2} A \times \cos ^{2} B}=R . H . S

Hence proved

Learn more about trignometric identities

Prove that (tan theta/1-cot theta) + cot theta/1-tan theta= 1 + sec theta*cosec theta

https://brainly.in/question/2552959

Prove that tan square A minus sin square A is equals to tan square A into sin square A​

https://brainly.in/question/8919018

Similar questions