Math, asked by bindujayk, 11 months ago

tan square A/tan square A-1+Cosec square A/sec square A-Cosec square A=1/1-2 cos square A

Answers

Answered by ranikumari4878
60

Answer:

We have proved that L.H.S=R.H.S.

i.e;

\dfrac{tan^2A}{tan^2A-1}+\dfrac{cosec^2A}{sec^2A-cosec^2A}=\dfrac{1}{1-2cos^2A}

Step-by-step explanation:

Here, we are evaluating by the given equation.

L.H.S

\dfrac{tan^2A}{tan^2A-1}+\dfrac{cosec^2A}{sec^2A-cosec^2A}\\

Here we are using some trigonometric formula as given below:

tanx=\dfrac{sinx}{cosx}\\cosecx=\dfrac{1}{sinx}\\secx=\dfrac{1}{cosx}

So the equation will be:

\dfrac{\dfrac{sin^2A}{cos^2A}}{\dfrac{sin^2A}{cos^2A}{-1}}+\dfrac{\dfrac{1}{sin^2A}}{\dfrac{1}{cos^2A}-\dfrac{1}{sin^2A}}

=\dfrac{\dfrac{sin^2A}{cos^2A}}{\dfrac{sin^2A-cos^2A}{cos^2A}}+\dfrac{\dfrac{1}{sin^2A}}{\dfrac{sin^2A-cos^2A}{cos^2A\cdot sin^2A}}

=\dfrac{sin^2A}{sin^2A-cos^2A}+\dfrac{1}{sin^2A}\cdot \dfrac{cos^2A\,sin^2A}{sin^2A-cos^2A}

=\dfrac{sin^2A}{sin^2A-cos^2A}+\dfrac{cos^2A}{sin^2A-cos^2A}

=\dfrac{sin^2A+cos^2A}{sin^2A-cos^2A}

=\dfrac{1}{sin^2A-cos^2A}

Again we know the formula

i.e;

sin^2x+cos^2x=1

Or,

sin^2x=1-cos^2x

Substituting this in the above equation:

\dfrac{1}{1-cos^2A-cos^2A}\\=\dfrac{1}{1-2cos^2A}

=R.H.S

Answered by MannemVarshith1205
48

Answer:

Step-by-step explanation:

Attachments:
Similar questions