Math, asked by Anya83, 3 months ago

Tan square alpha + cot square alpha + 2 = sec square alpha.cosec square alpha​

Answers

Answered by Ataraxia
52

To Prove :-

 \sf  {tan}^{2}   \alpha +  {cot}^{2} \alpha  + 2 =  {sec}^{2} \alpha  {cosec}^{2} \alpha

Solution :-

  :  \implies \sf LHS =  {tan}^{2}  \alpha +  {cot}^{2}  \alpha + 2

 \bf \dag \: tan \alpha =  \dfrac{sin \alpha}{cos \alpha}

 \bf \dag \: cot \alpha =  \dfrac{cos \alpha}{sin \alpha}

 :  \implies \sf LHS =  \dfrac{ {sin}^{2}  \alpha}{ {cos}^{2} \alpha }   +  \dfrac{ {cos}^{2}  \alpha }{ {sin}^{2} \alpha }  + 2

 :  \implies \sf LHS =  \dfrac{ {sin}^{4} \alpha  +  {cos}^{4}  \alpha }{ {sin}^{2}  \alpha {cos}^{2}  \alpha}  + 2

:  \implies \sf LHS =   \dfrac{ {sin}^{4} \alpha +  {cos}^{4}   \alpha + 2 {sin}^{2}  \alpha {cos}^{2}  \alpha}{ {sin}^{2}  \alpha {cos}^{2} \alpha }

:  \implies \sf LHS =  \dfrac{( {sin}^{2}  \alpha +  {cos}^{2}  \alpha ) ^{2} }{ {sin}^{2}  \alpha {cos}^{2}  \alpha}

 \bf \dag \:  {sin}^{2}  \alpha +  {cos}^{2}  \alpha = 1

:  \implies \sf LHS =   \dfrac{1}{ {sin}^{2}  \alpha {cos}^{2}  \alpha}

 \bf \dag \: sec \alpha =  \dfrac{1}{cos \alpha}

 \bf \dag \: cosec \alpha =  \dfrac{1}{sin \alpha}

 :  \implies \sf LHS =  {sec}^{2}  \alpha {cosec}^{2} \alpha

 :  \implies \sf LHS = RHS

Hence proved.

Answered by diajain01
22

{ \boxed{\underline{\tt{ \orange{Required  \: answer:-}}}}}

★TO PROVE:-

 :  \implies \sf \bf{Tan^2 \alpha +  Cot^2 \alpha +2  =  \: Sec^2 \alpha × Cosec^2 \alpha \: }

★FORMULA USED:-

 \bigcirc  \:  \:  \:  \: \sf \bf{Tan\theta = \frac{ Sin \theta }{Cos \theta} }

 \bigcirc \:  \:  \:  \sf \bf{Cot \theta =  \frac{Cos\theta}{Sin\theta} }

 \bigcirc \:  \:  \:  \:  \sf \bf{ \ { \sin }^{2}  \theta \: +  { \cos }^{2}   \theta = 1 }

 \bigcirc \:  \:  \:  \:  \sf \bf{ \frac{1}{sin \theta}  = cosec \:  \theta \:  }

 \bigcirc \:  \:  \:  \:  \sf \bf{} \frac{1}{cos \theta } = sec \theta \:

★SOLUTION:-

{\boxed{\underline{\bf{\red{ L.H.S}}}}}

 :  \implies \sf{Tan^2 \alpha +  Cot^2 \alpha +2}

:\implies\sf{  \frac{{sin}^{2}  \theta}{ {cos}^{2} \theta }  +  \frac{ {cos}^{2}  \theta}{ {sin}^{2}  \theta} + 2 }

 :  \implies \sf{ \frac{ {sin}^{4}  \theta \:  +  {cos}^{4} \theta \:  + 2 \:  {cos}^{2}  \theta \:  {sin}^{2}  \theta }{ {cos}^{2} \theta \:  {sin}^{2}  \theta \:  } }

 :  \implies \sf{ \frac{ {( {sin}^{2}  \theta \:  +  {cos}^{2} \theta)}^{2}  }{ {sin}^{2}  \theta \:  {cos}^{2}  \theta} }

 :  \implies \sf{ \frac{1}{ {sin}^{2}  \theta \:  {cos}^{2}  \theta \: } }

 :  \longrightarrow \sf{ {cosec}^{2}  \theta \: . \:  {sec}^{2} \theta \:  }

{\boxed{\underline{\bf{\red{R .H.S}}}}}

So, LHS = RHS

HENCE PROVED.

Similar questions