tan square P-tan square Q=sin square P-sin square Q/cos square P ×cos square Q
Answers
Answered by
8
Solution
→ tan²P - tan²Q = (sin²P - sin²Q)/(cos²P cos²Q)
Simply break the terms.
L.H.S → sin²P/(cos²P cos²Q) - sin²Q/(cos²P cos²Q)
→ tan²P/cos²Q - tan²Q/cos²P
Since 1/cos∅ = sec∅
→ tan²P × sec²Q - tan²Q × sec²P
Since sec²∅ = tan²∅ + 1
→ tan²P(tan²Q + 1) - tan²Q(tan²P + 1)
→ tan²P tan²Q + tan²P - tan²P tan²Q - tan²Q
→ tan²P - tan²Q = R.H.S
Hence Proved
Answered by
10
→ tan²P - tan²Q = (sin²P - sin²Q)/(cos²P cos²Q)
___________________
L.H.S → sin²P/(cos²P cos²Q) - sin²Q/(cos²P cos²Q)
→ tan²P/cos²Q - tan²Q/cos²P
Since 1/cos∅ = sec∅
→ tan²P × sec²Q - tan²Q × sec²P
Since sec²∅ = tan²∅ + 1
→ tan²P(tan²Q + 1) - tan²Q(tan²P + 1)
→ tan²P tan²Q + tan²P - tan²P tan²Q - tan²Q
→ tan²P - tan²Q = R.H.S
Hence Proved
___________________
Similar questions