Math, asked by anishapatro09, 3 months ago

tan square theta +( 1 -√3) tan theta -√ 3 = 0​

Answers

Answered by sowaibataslim27
29

Answer:

hope this answer help you dear

Attachments:
Answered by mathgenius11
2

Step-by-step explanation:

 \tan^{2}  \alpha  + (1 -  \sqrt{3} ) \tan( \alpha )  -  \sqrt{3 }  = 0 \\   \tan^{2}  \alpha  +  \tan( \alpha )  -  \sqrt{3}  \tan( \alpha )  -  \sqrt{3}  = 0 \\  \tan( \alpha ) ( \tan( \alpha )  + 1) -  \sqrt{3} (\tan( \alpha )  + 1) = 0 \\  (\tan( \alpha )  + 1)( \tan( \alpha  )  -  \sqrt{3} ) = 0 \\ if(\tan( \alpha )  + 1) = 0 \\ \tan( \alpha )   =  - 1 \\ \tan( \alpha )   =  \tan(135)  \\  \alpha  = 135 \: or \frac{3\pi}{4}  \\ if \:\tan( \alpha )   -  \sqrt{3}  = 0 \\  \tan( \alpha  )  =  \sqrt{3}  \\  \tan( \alpha )  =  \tan(60)  \\  \alpha  = 60 \: or \frac{\pi}{3}

Similar questions