Math, asked by avinsmallo8473, 1 month ago

Tan square theta /1+Tan square theta

Answers

Answered by IamIronMan0
6

Answer:

 \huge \purple{{ \sin {}^{2} (\theta)}}

Step-by-step explanation:

 \frac{\tan {}^{2} (\theta) }{1 +  \tan {}^{2} (\theta) }  \\  \\  =  \frac{ \tan {}^{2} (\theta) }{ \sec {}^{2} ( \theta) }  \\  \\  =  \frac{ \sin {}^{2} (\theta) }{ \cos {}^{2} (\theta). \frac{1}{ \cos {}^{2} (\theta)}  }  \\  \\  =    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sin {}^{2} (\theta)

Answered by BrainlyArnab
5

 \huge \green{ \boxed{ \bf \purple{ {sin}^{2}  \theta}}}

Step-by-step explanation:

 \bf  \frac{\tan^{2}\theta}{1 +  { \tan}^{2}  \theta} \\

We know that,

1 + tan²θ = sec²θ

So,

 \bf \frac{ {tan}^{2}  \theta}{1 +  { tan}^{2}  \theta} \\  \\  =  >  \bf \frac{tan {}^{2}  \theta}{sec {}^{2}  \theta}  \\  \\  \bf =  >  \frac{tan \theta}{sec \theta}  \times   \frac{tan \theta}{sec \theta}  \\

We should remember that,

   \large \frac{tan \theta}{sec \theta}  = sin \theta

So,

 \bf\frac{tan \theta}{sec \theta}  \times   \frac{tan \theta}{sec \theta}  \\ \\  =  >  \bf sin \theta \times sin \theta \\  \\   =  >  \red{ \boxed{ \bf \blue{ sin {}^{2}  \theta}}}

Hence,

The answer is sin²θ.

 \:

Hope it helps.

#BeBrainly :-)

Similar questions