Math, asked by sanaahmed222, 1 year ago

tan square theta by sec theta minus 1 whole square is equals to 1 + cos theta by 1 - cos theta​

Attachments:

Answers

Answered by LovelyG
130

Solution:

Given that ;

 \dfrac{ \tan^{2} \theta}{( \sec \theta - 1)^{2}} =  \dfrac{(1 +  \cos \theta}{(1 -  \cos \theta)}

Consider LHS,

 \dfrac{ \tan^{2} \theta }{( \sec \theta - 1) {}^{2}  }

We know that,

tan²θ = sec²θ - 1

 \dfrac{ \sec^{2}\theta - 1 }{( \sec \theta - 1) {}^{2}  }

Also, a² - b² = (a + b)(a - b)

 \frac{ \cancel{ (\sec \theta  - 1)}( \sec \theta + 1)}{ \cancel{(\sec \theta  - 1)}( \sec \theta  -  1)}  \\  \\  \frac{ \sec \theta + 1}{ \sec \theta  - 1}

We know that,

  • secθ = 1/cosθ

 \implies \frac{ \left( \frac{1}{ \cos \theta}  + 1 \right)}{\left( \frac{1}{ \cos \theta}   -  1 \right)}  \\  \\ \implies  \frac{\left( \frac{1 +  \cos \theta}{ \cos \theta}  \right)}{\left( \frac{1 -  \cos \theta}{ \cos \theta}   \right)}  \\  \\ \bf  Cancelling \: the \: denominator : \\  \\ \implies  \bf \frac{1 +  cos \theta}{1 -  cos \theta}  = RHS

Hence, it is proved!

Answered by ayushmanmishra483
45

Answer:

Mark me as brainliest

.... Hope u get ur answer...

Attachments:
Similar questions