Math, asked by meghana57, 1 year ago

tan square theta + cos square theta + 2 is equals to secant squared theta cosec square theta

Answers

Answered by pinquancaro
51

Answer and Explanation:

To prove : \tan^2\theta+\cot^2\theta+2=\sec^2\theta \csc^2\theta

Solution :

Taking LHS,

=\tan^2\theta+\cot^2\theta+2

We know, \tan\theta\cot\theta=1

So, =\tan^2\theta+\cot^2\theta+2\tan\theta\cot\theta

It forming an identity, a^2+b^2+2ab=(a+b)^2

=(\tan\theta+\cot\theta)^2

=(\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta})^2

=(\frac{\sin^\theta+\cos^\theta}{\cos\theta\sin\theta})^2

=(\frac{1}{\cos\theta\sin\theta})^2

=\frac{1}{\cos^2\theta\sin^2\theta}

=\sec^2\theta \csc^2\theta

=RHS

So, LHS=RHS

Answered by mysticd
24

Answer:

 tan^{2}\theta+cot^{2}\theta+2=sec^{2}\theta cosec^{2}\theta

Step-by-step explanation:

LHS = tan^{2}\theta+cot^{2}\theta+2\\=(1+tan^{2}\theta)+(1+cot^{2}\theta)\\=sec^{2}\theta+cosec^{2}\theta

\* By Trigonometric identities:

i) 1+tan²A = sec²A

ii) 1+cot²A = cosec²A*/

=\frac{1}{cos^{2}\theta}+\frac{1}{sin^{2}\theta}\\=\frac{sin^{2}\theta+cos^{2}\theta}{cos^{2}\theta sin^{2}\theta}

=\frac{1}{cos^{2}\theta sin^{2}\theta}\\=\frac{1}{cos^{2}\theta}\times \frac{1}{sin^{2}\theta}\\=sec^{2}\theta cosec^{2}\theta \\=RHS

•••♪

Similar questions