Tan square theta + cot squared theta + 2 barabar sec square theta +cos squared theta
Answers
Answered by
5
Your question needs a correction.
Correct question : tan²θ + cot²θ + 2 = sec²θ + cosec²θ
To Prove : tan²θ + cot²θ + 2 = sec²θ + cosec²θ
Solution :
⇒ sec²θ + cosec²θ
From trigonometric identities, sec²θ = 1 + tan²θ and cosec²θ = 1 + cot²θ
⇒ ( 1 + tan²θ ) + ( 1 + cot²θ )
⇒ 1 + tan²θ + 1 + cot²θ
⇒ tan²θ + cot²θ + 2
Hence, proved. Or we can solve it from left hand side too.
⇒ tan²θ + cot²θ + 2
⇒ tan²θ + cot²θ + 1 + 1
⇒ ( 1 + tan²θ ) + ( 1 + cot²θ )
From trigonometric identities, sec²θ = 1 + tan²θ and cosec²θ = 1 + cot²θ
⇒ sec²θ + cosec²θ
Hence, proved.
Answered by
2
Given
tan2A + cot2 A = Sec2A Cosec2A - 2
Taking L.H.S.
⇒tan2A + cot2 A
⇒Sec2A - 1 + Cosec2A - 1 ( As we know 1 + tan2A = Sec2A , 1 + cot2A = Cosec2A )
⇒Sec2A + Cosec2A - 2
⇒1Cos2A + 1Sin2A - 2
⇒Sin2A + Cos2ACos2ASin2A - 2
⇒1Cos2ASin2A - 2
⇒Sec2A Cosec2A - 2
Hence
L.H.S. = R.H.S. ( Hence proved )
tan2A + cot2 A = Sec2A Cosec2A - 2
Taking L.H.S.
⇒tan2A + cot2 A
⇒Sec2A - 1 + Cosec2A - 1 ( As we know 1 + tan2A = Sec2A , 1 + cot2A = Cosec2A )
⇒Sec2A + Cosec2A - 2
⇒1Cos2A + 1Sin2A - 2
⇒Sin2A + Cos2ACos2ASin2A - 2
⇒1Cos2ASin2A - 2
⇒Sec2A Cosec2A - 2
Hence
L.H.S. = R.H.S. ( Hence proved )
Similar questions