Math, asked by ransawjeetant, 4 months ago

tan squre 120° cot squre 240° - cot squre 210° tan squre 240°/ 3tan 45° sin 270° - sec 360° cos270°​

Answers

Answered by pulakmath007
3

SOLUTION

TO EVALUATE

 \displaystyle \sf{ { \tan}^{2}  {120}^{ \circ}   { \cot}^{2} {240}^{ \circ} -  \frac{ { \cot}^{2} {210}^{ \circ} { \tan}^{2} {240}^{ \circ}}{3 \tan {45}^{ \circ}  \sin {270}^{ \circ} } - 4 \sec  {360}^{ \circ}  \cos  {270}^{ \circ} }

EVALUATION

 \displaystyle \sf{ { \tan}^{2}  {120}^{ \circ}   { \cot}^{2} {240}^{ \circ} -  \frac{ { \cot}^{2} {210}^{ \circ} { \tan}^{2} {240}^{ \circ}}{3 \tan {45}^{ \circ}  \sin {270}^{ \circ} } - 4 \sec  {360}^{ \circ}  \cos  {270}^{ \circ} }

 \displaystyle \sf{ =  { \tan}^{2}( 2 \times  {90}^{ \circ}  -{60}^{ \circ}  )  { \cot}^{2} (3 \times {90}^{ \circ} -{30}^{ \circ}  ) -  \frac{ { \cot}^{2}( 2 \times {90}^{ \circ} +  {30}^{ \circ} ){ \tan}^{2} (3 \times {90}^{ \circ} - {30}^{ \circ} )}{3 \tan {45}^{ \circ}  \sin (3 \times {90}^{ \circ}  +  {0}^{ \circ} )} - 4 \sec   (4 \times {90}^{ \circ}  +  {0}^{ \circ} ) \cos  (3 \times {90}^{ \circ}  +  {0}^{ \circ} ) }

 \displaystyle \sf{ =  { \tan}^{2}{60}^{ \circ}    { \tan}^{2} {30}^{ \circ}   -  \frac{ { \cot}^{2}  {30}^{ \circ} { \cot}^{2}  {30}^{ \circ} }{3 \tan {45}^{ \circ}   \times  - \cos {0}^{ \circ} } - 4 \sec     {0}^{ \circ}  \sin   {0}^{ \circ}  }

 \displaystyle \sf{ =  3 \times  \frac{1}{3}     +   \frac{ 3 \times 3 }{3  \times 1 \times 1} - 4  \times 1 \times 0}

 = 1 + 3

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,

find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971


IdyllicAurora: Feeling proud to comment ... great !!
pulakmath007: Thank you
Similar questions
Math, 10 months ago