Math, asked by NewUserName, 6 months ago

tanΘ-tanΦ=x and cotΦ-cotΘ=y
Then Prove That cot(Θ-Φ)=\frac{1}{x} +\frac{1}{y}

Don't Spam please

Answers

Answered by abhimanyusingh49110
0

Step-by-step explanation:

Its just a joke don't take it seriously

L. H. S multiplied by 0=0

R. H. S multiplied by 0=0

Hence proved

L. H. S=R. H. S

(proved)

Answered by Anonymous
24

\red{\bold{\underline{\underline{❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥}}}}

\blue{\bold{\underline{\underline{❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥}}}}

\red{\bold{\underline{\underline{Given:}}}}

tanθ-tanφ = x

=> \frac{1}{cotθ}-\frac{1}{cotφ}

=> \frac{cotφ-cotθ}{cotθ.cotφ} = x

=> \frac{y}{cotθ.cotφ} = x

=> {cotθ.cotφ} = \frac{y}{x}

And,

cotφ-cotθ = y

\red{\bold{\underline{\underline{LHS:}}}}

cot(θ-φ)

= \frac{cotθ.cotφ + 1 }{cotφ-cotθ}

= \frac{y/x + 1}{y}

= \frac{(y+x)/x}{y}

= \frac{y+x}{xy}

= \frac{y}{xy} + \frac{x}{xy}

❥Hence\: Proved

\blue{\bold{\underline{\underline{❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥}}}}

\red{\bold{\underline{\underline{❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥}}}}

Similar questions