Math, asked by mitapatel11476, 7 months ago

Tan theeta/1-cot there + cot theeta/ 1-tan theeta = 1+sec theeta . Cosec theeta

Answers

Answered by Brâiñlynêha
20

Given :-

\sf \dfrac{tan\theta}{1-cot\theta}+\dfrac{co\theta}{1-tan\theta}=1+sec\theta. cosec\theta

We have to prove the given equation :-

Convert this into- \sf sin\theta\ \ and \ cos\theta

\bullet\sf tan\theta= \dfrac{sin\theta}{cos\theta}\\ \\ \bullet \sf cot\theta= \dfrac{cos\theta}{sin\theta}

Put the value of , in the given equation

Take LHS :-

\longmapsto\sf \dfrac{tan\theta}{1-cot\theta}+\dfrac{cot\theta}{1-tan\theta}\\ \\ \\ \longmapsto\sf \dfrac{\bigg(\dfrac{sin\theta}{cos\theta}\bigg)}{\bigg(1-\dfrac{cos\theta}{sin\theta}\bigg)}\ + \dfrac{\bigg(\dfrac{cos\theta}{sin\theta}\bigg)}{\bigg(1-\dfrac{sin\theta}{cos\theta}\bigg)}\\ \\ \\ \longmapsto\sf \dfrac{\bigg(\dfrac{sin\theta}{cos\theta}\bigg)}{\bigg(\dfrac{sin\theta-cos\theta}{sin\theta}\bigg)} \ +  \dfrac{\bigg(\dfrac{cos\theta}{sin\theta}\bigg)}{\bigg(\dfrac{cos\theta-sin\theta}{cos\theta}\bigg)} \\ \\  \\ \longmapsto\sf \bigg(\dfrac{sin\theta}{cos\theta}\bigg)\times \bigg(\dfrac{sin\theta}{sin\theta-cos\theta}\bigg)\ + \bigg(\dfrac{cos\theta}{sin\theta}\bigg)\times \bigg(\dfrac{cos\theta}{cos\theta-sin\theta}\bigg)\\ \\ \\ \longmapsto\sf \dfrac{sin^2\theta}{cos\theta(sin\theta - cos\theta)} \ + \dfrac{cos^2\theta}{sin\theta(cos\theta-sin\theta)}

Take (-) as common ,

\longmapsto\sf \dfrac{sin^2\theta}{cos\theta(sin\theta - cos\theta)} \ - \dfrac{cos^2\theta}{sin\theta(sin\theta-cos\theta)}\\ \\ \\ \longmapsto\sf \dfrac{sin^3\theta-cos^3\theta}{sin\theta\ cos\theta(sin\theta-cos\theta)}

Formula used here , !

\boxed{\sf {\small\ \ a^3-b^3= (a-b)(a^2+b^2+ab)}}

\longmapsto\sf \dfrac{\cancel{(sin\theta-cos\theta)}(sin^2\theta+cos^2\theta+sin\theta. cos\theta)}{sin\theta cos\theta\cancel{(sin\theta-cos\theta)}}

\boxed{\sf {\small\ \ sin^2\theta+cos^2\theta=1}}

\longmapsto\sf \dfrac{1+ sin\theta \ cos\theta}{sin\theta\ cos\theta}\\ \\ \\  \longmapsto\sf \dfrac{1}{sin\theta \ cos\theta} + \cancel{\dfrac{sin\theta.cos\theta}{sin\theta\ cos\theta}}\\ \\ \\ \bullet\sf \dfrac{1}{sin\theta} = cosec \theta\ ; \ \bullet\sf \dfrac{1}{cos\theta}= sec\theta\\ \\ \\ \longmapsto\sf cosec\theta sec\theta+1\\ \\ \\ \longmapsto\sf \ or \ \ 1+ cosec\theta sec\theta\ \ \ \ (\ hence \ proved\ !)\\ \\ \sf \ L.H.S = R.H.S


Anonymous: Awesome!!! ♥
BrainlyElegantdoll: Fabulous :D ❤️
Brâiñlynêha: Thanka
MOSFET01: perfect
Brâiñlynêha: Thanks :D
Answered by Anonymous
3

{\underline{\huge{\mathbf{\color{blue}{question}}}}}

\sf \dfrac{tan\theta}{1-cot\theta}+\dfrac{cot\theta}{1-tan\theta}=1+sec\theta. cosec\theta

{\underline{\huge{\mathbf{\color{blue}{solution}}}}}

\sf \dfrac{tan\theta}{1-cot\theta}+\dfrac{cot\theta}{1-tan\theta}=1+sec\theta. cosec\theta

LHS :-

\sf \dfrac{tan\theta}{1-cot\theta}+\dfrac{cot\theta}{1-tan\theta}

  • \sf tan\theta= \dfrac{sin\theta}{cos\theta}
  • \sf cot\theta= \dfrac{cos\theta}{sin\theta}

\sf \dfrac{\bigg(\dfrac{sin\theta}{cos\theta}\bigg)}{\bigg(1-\dfrac{cos\theta}{sin\theta}\bigg)}\ + \dfrac{\bigg(\dfrac{cos\theta}{sin\theta}\bigg)}{\bigg(1-\dfrac{sin\theta}{cos\theta}\bigg)}

\sf \dfrac{\bigg(\dfrac{sin\theta}{cos\theta}\bigg)}{\bigg(\dfrac{sin\theta-cos\theta}{sin\theta}\bigg)} \ +  \dfrac{\bigg(\dfrac{cos\theta}{sin\theta}\bigg)}{\bigg(\dfrac{cos\theta-sin\theta}{cos\theta}\bigg)}

\sf \bigg(\dfrac{sin\theta}{cos\theta}\bigg)\times \bigg(\dfrac{sin\theta}{sin\theta-cos\theta}\bigg)\ + \bigg(\dfrac{cos\theta}{sin\theta}\bigg)\times \bigg(\dfrac{cos\theta}{cos\theta-sin\theta}\bigg)

\sf \dfrac{sin^2\theta}{cos\theta(sin\theta - cos\theta)} \ + \dfrac{cos^2\theta}{sin\theta(cos\theta-sin\theta)}

\sf \dfrac{sin^2\theta}{cos\theta(sin\theta - cos\theta)} \ - \dfrac{cos^2\theta}{sin\theta(sin\theta-cos\theta)}

\sf \dfrac{sin^3\theta-cos^3\theta}{sin\theta\ cos\theta(sin\theta-cos\theta)}

  • {\sf {\small\ \ a^3-b^3= (a-b)(a^2+b^2+ab)}}

\sf \dfrac{\cancel{(sin\theta-cos\theta)}(sin^2\theta+cos^2\theta+sin\theta. cos\theta)}{sin\theta cos\theta\cancel{(sin\theta-cos\theta)}}

  • {\sf {\small\ \ sin^2\theta+cos^2\theta=1}}

\sf \dfrac{1+ sin\theta \ cos\theta}{sin\theta\ cos\theta}

\sf \dfrac{1}{sin\theta \ cos\theta} + \cancel{\dfrac{sin\theta.cos\theta}{sin\theta\ cos\theta}}

  • \sf \dfrac{1}{sin\theta} = cosec \theta
  • \sf \dfrac{1}{cos\theta}= sec\theta

 cosec\theta \:sec\theta + 1

RHS:-

 cosec\theta\: sec\theta + 1

compare

LHS = RHS

......hence proved

Similar questions