Math, asked by s9438246092, 11 months ago

tan theeta = 7/12 then find (sin theeta+cos theeta)/(3sintheeta+4costheeta)​

Answers

Answered by soumya1201
1

Answer:

19/69

Step-by-step explanation:

it's simple divide costheta to each term and put the value of tan theta

Attachments:
Answered by BrainlyConqueror0901
3

Answer:

{\bold{\therefore  \frac{ sin\theta  +   cos \theta }{ 3 sin\theta + 4 cos\theta }  =  \frac{19}{33}  }}

Step-by-step explanation:

{\bold{\huge{\underline{SOLUTION-}}}}

• In the given question information given

about trigonometry.

• We have to find the given value by using some trigo functions.

 \underline \bold{Given : } \\  \implies  \tan\theta =  \frac{7}{12}  \\  \\  \underline  \bold{To \: Find : } \\ \implies  \frac{ \sin \theta +  \cos \theta  }{3 \sin \theta +  4\cos \theta  }  = ?

• According to given questions :

 \bold{using \: trigonometric \: functions} \\  \implies  \tan \theta =  \frac{7}{12}    \\ \implies  \cot \theta  =  \frac{1}{ \tan\theta }  \\  \implies  \cot\theta =  \frac{1}{ \frac{7}{12} }   \\   \implies\cot \theta =  \frac{12}{7}  \\  \\ \implies  \frac{ \sin\theta +  \cos \theta  }{3 \sin \theta +  4\cos \theta }  \\   \bold{dividing \:  } \bold{sin\theta} \bold{ \: in \: numerator \: and \: denominator }\\  \implies  \frac{ \frac{ \sin \theta    }{ \sin\theta}  +  \frac{ \cos \theta }{ \sin \theta } }{ \frac{3 \sin \theta }{ \sin \theta  } +  \frac{ 4\cos \theta }{ \sin \theta }  }  \\  \implies  \frac{1 +  \cot\theta}{3 +   4\cot\theta}  \\  \implies  \frac{1 +  \frac{12}{7} }{3 +  4\times\frac{12}{7} }  \\  \implies  \frac{ \frac{7 + 12}{7} }{ \frac{21 + 48}{7} }  \\  \implies  \frac{19}{7}  \times  \frac{7}{69}  \\   \bold{\implies  \frac{19}{69}}  \\  \\    \bold{\therefore  \frac{ sin\theta  +   cos \theta }{ 3 sin\theta +  cos\theta }  =  \frac{19}{69} }

Similar questions