Math, asked by surodeep, 10 months ago

tan theta =1/2 then evaluate cos theta/sintheta +sintheta/1+ cos thet​

Answers

Answered by anay62
78

Answer:

Answer is in both the attachment

For full view click on the photo

Please mark as brainliest

Hope it helps you

All answers are right

Attachments:
Answered by dukulai890
14

Given: \tan \theta=\frac{1}{2}

we have to find: \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{1+\cos \theta} =?

From given value we get:

opposite=1

Adjacent=2

Hypotonuse=\sqrt{1^{2}+2^{2}  } =\sqrt{1+4} =\sqrt{5}

Therefore:

\cos \theta=\frac{2}{\sqrt{5} }

\sin \theta=\frac{1}{\sqrt{5} }

therefore:

\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{1+\cos \theta}

=\frac{\frac{2}{\sqrt{5} } }{\frac{1}{\sqrt{5} } } +\frac{\frac{1}{\sqrt{5} } }{1+\frac{2}{\sqrt{5} } }

=\frac{\frac{2}{\sqrt{5} } }{\frac{1}{\sqrt{5} } } +\frac{\frac{1}{\sqrt{5} } }{\frac{\sqrt{5}+2 }{\sqrt{5} }  } }

=\frac{2}{\sqrt{5} } \times \frac{\sqrt{5} }{1} +\frac{1}{\sqrt{5} } \times\frac{\sqrt{5} }{\sqrt{5} +2}

=2+\frac{1}{\sqrt{5} +2}

rationalizing:

=2+\frac{1}{\sqrt{5} +2}\times\frac{ {\sqrt{5} -2}}{ {\sqrt{5} -2}}

=2+\frac{\sqrt{5} -2}{\sqrt{5} ^{2}-2^{2}  }

=2+\frac{\sqrt{5} -2}{5-4}

=2+\sqrt{5} -2

=\sqrt{5} .

Therefore:

\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{1+\cos \theta} =\sqrt{5}.

Similar questions