Math, asked by ayazkhanyousafz6651, 11 months ago

Tan theta/1-cot theta +cot theta/1-tan theta= 1+sec theta cosec theta

Answers

Answered by Anonymous
10

To prove

==>

 \frac{ \tan(x) }{1 -  \cot(x) }  +  \frac{ \cot(x) }{1 -  \tan(x) }  = 1 +  \sec(x) . \csc(x)

Solution

Let theta = x

✪ While solving this type of questions we take on one side and prove it equivalent to the other given side , so applying this method firstly we take LHS and prove it equivalent to RHS.

LHS

 \frac{ \tan(x) }{1 -  \cot(x ) }  +  \frac{ \cot(x) }{1 -  \tan(x) }

As we know that, we can write

tan x = sinx/cos x

Cot x = cos x / sin x

So replacing tan and cot from above mentioned values:

 \frac{ \frac{ \sin(x) }{ \cos(x) } }{1 -  \frac{ \cos(x) }{ \sin(x) } }  +  \frac{ \frac{ \cos(x) }{ \sin(x) } }{1 -  \frac{ \sin(x) }{ \cos(x) } }

Now we will perform LCM of the digits on denominator place of both fractions.

 \frac{ \frac{ \sin(x) }{ \cos(x) } }{ \frac{ \sin(x) -  \cos(x) ) }{ \sin(x) } }  +  \frac{ \frac{ \cos(x) }{ \sin(x) } }{ \frac{ \cos(x) -  \sin(x) ) }{ \cos(x) } }

 \frac{ { \sin(x) }^{2} }{ \cos(x)( \sin(x ) - \cos(x) ) }  +  \frac{ \cos( {x}^{2} ) }{ \sin(x) ( \cos(x)  -  \sin(x) }

Now we will take ( - ) as common from our 2nd fraction then the positive values will change into negative values, applying this we get :

 \frac{ { \sin(x) }^{2} }{ \cos(x)( \sin(x) -  \cos(x)   )}  -  \frac{ { \cos(x) }^{2} }{ \sin(x)( \sin(x)   -  \cos(x) )}

(as we took ( - ) as common)

Now again we will take the LCM of these two fractions, then we will get :

 \frac{ { \sin(x) }^{3} -  { \cos(x) }^{3}  }{ \sin(x) . \cos(x) ( \sin(x) -  \cos(x) ) }

We will apply here the algebraic identity (a³-b³ = (a-b)(a²+b² +ab)

 \frac{( \sin(x) -  \cos(x) )( { \sin(x) }^{2}   +  { \cos(x) }^{2}  +  \sin(x). \cos(x)  }{ \sin(x). \cos(x) ( \sin(x) -  \cos(x)   }

Here sin X - cos x is present in both numerator and denominator so it will get cancelled.

and as we know that

sin²x + cos²x = 1

So we get :

 \frac{1 +  \sin(x). \cos(x)  }{ \sin(x). \cos(x)  }

 \frac{1}{ \sin(x) . \cos(x) }  +  \frac{ \sin(x). \cos(x)  }{ \sin(x). \cos(x)  }

As in 2nd fraction numerator and denominator are same so they will also cancelled.

 \frac{1}{ \sin(x) }  \times  \frac{1}{ \cos(x) }  + 1

As we know that

1/sin X = cosec X

1/cos x = sec x

So replacing the values with sec and cosec we get

 \csc(x) . \sec(x)  + 1

or

LHS =1 + sec x . cosec X= RHS

Hence proved


Swarnimkumar22: Nice answer
Answered by Anonymous
1

GIVEN:-

 \sf  \frac{ \tan \theta}{1 -  cot\theta }  +  \frac{  \cot \theta}{ 1 -  \tan \theta}  = 1 +  \sec \theta \cosec  \theta

TO FIND:-

 \tt lhs = rhs

SOLUTION:-

 \tt lhs \ratio  -

 \sf  \frac{ \tan \theta}{1 -  cot\theta }  +  \frac{  \cot \theta}{ 1 -  \tan \theta}

 \tt  =  \frac{ \frac{ \sin \theta  }{ \cos\theta } }{1 -  \frac{\cos\theta}{\sin \theta}  }  +    \frac{\frac{\cos\theta}{\sin \theta}  }{1 - \frac{ \sin \theta  }{ \cos\theta }}

 \tt =   \frac{ \frac{ \sin \theta  }{ \cos\theta } }{ \frac{ \sin \theta- \cos\theta}{  \sin \theta}  }  +    \frac{\frac{\cos\theta}{\sin \theta}  }{ \frac{  \cos\theta  -  \sin \theta  }{ \cos\theta }}

 \tt  =  \frac{ \sin \theta   }{ \cos \theta  }  \times  \frac{ \sin \theta  }{(\sin \theta - \cos \theta )   }  +  \frac{\cos \theta }{\sin \theta}  \times \frac{  \cos  \theta  }{( \cos  \theta -   \sin \theta )   }

 \tt =  \frac{  { \sin}^{2}\theta}{ \cos \theta( \sin \theta -  \cos \theta)  }  -  \frac{ { \cos }^{2}  \theta }{ \sin \theta( \sin \theta -  \cos \theta )    }

 \tt  =  \frac{1}{( \sin \theta  -  \cos \theta) } [ \frac{ { \sin}^{2}  \theta }{ \cos \theta  }  -  \frac{ { \cos }^{2}  \theta}{ \sin \theta  } ]

 \tt  =  \frac{1}{( \sin \theta  -  \cos \theta) } [    \frac{ { \sin}^{3  } \theta -  { \cos }^{3} \theta  }{ \sin \theta \cos \theta  }  ]

 \tt  =  \frac{1}{( \sin \theta  -  \cos \theta) } [   \frac{( \sin \theta -  \cos \theta)( { \sin}^{2}  \theta +  { \cos }^{2}    \theta +  \sin \theta \cos \theta )}{ \sin \theta \cos \theta    }   ]

 \tt  = \frac{(1 +  \sin \theta \cos \theta)}{( \sin \theta \cos \theta)}  =  \frac{1}{ \sin \theta \cos \theta  }  +  \frac{( \sin \theta \cos \theta)   }{( \sin \theta \cos \theta)  }

 =  \sec \theta \cosec \theta + 1

 = rhs

Similar questions