Math, asked by RKDeshpande, 1 year ago

tan theta/1-cot theta + cot theta/1-tan theta =1+sec theta cosec theta

Answers

Answered by vaduz
28

Answer:

Step-by-step explanation:

L.H.S.

\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}\\\\\frac{\frac{\sin A}{\cos A}}{1-\frac{\cos A}{\sin A}}+\frac{\frac{\cos A}{\sin A}}{1-\frac{\sin A}{\cos A}}\\\\\frac{\sin ^{2}A}{\cos A(\sin A-\cos A)}+\frac{\cos  ^{2}A}{\sin A(\cos A-\sin A)}\\\\\frac{\sin ^{2}A-\cos ^{2}A}{\cos A\sin A(\sin A-\cos A)}\\\\\frac{1+\sin A\cos A}{\cos A\sin A} \\\\1+\sec A\csc A

=R.H.S.

hence proved.

Answered by mindfulmaisel
13

"\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=\frac{\tan \theta}{1-\frac{1}{\tan \theta}}+\frac{\frac{1}{\tan \theta}}{1-\tan \theta}

=\frac{\tan ^{2} \theta}{\tan \theta-1}-\frac{1}{\tan \theta(\tan \theta-1)}

=\frac{1}{\tan \theta-1}\left\{\tan ^{2} \theta-\frac{1}{\tan \theta}\right\}

=\frac{1}{\tan \theta-1}\left(\frac{\tan ^{3} \theta-1}{\tan \theta}\right)

\because a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)

=\frac{\left\{(\tan \theta-1)\left(\tan ^{2} \theta+1+\tan \theta\right)\right\}}{\{(\tan \theta-1)(\tan \theta)\}}

=\tan \theta+\cot \theta+1

=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}+1

=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cdot \cos \theta}+1

=\frac{1}{\sin \theta \cdot \cos \theta}+1

\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=\csc \theta \cdot \sec \theta+1"

Similar questions