Math, asked by sgaileandat1570, 1 year ago

(tan theta)/(1-cot theta)+(cot theta)/(1-tan theta)=1+sec theta csc theta

Answers

Answered by sprao534
5

please see the attachment

Attachments:
Answered by FelisFelis
7

\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \times \csc \theta Proved.

Step-by-step explanation:

Consider the provided information.

\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \times \csc \theta

Use the identity: \begin{array}{l}{\tan \theta=\frac{\sin \theta}{\cos \theta}}, {\cot \theta=\frac{\cos \theta}{\sin \theta}}\end{array}

Consider the LHS.

=\frac{\frac{\sin \theta}{\cos \theta}}{1-\left(\frac{\cos \theta}{\sin \theta}\right)}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\left(\frac{\sin \theta}{\cos \theta}\right)}

=\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta-\sin \theta}{\cos \theta}}\\=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)}

=\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta \times \cos \theta(\sin \theta-\cos \theta)}

Use the identity: \left.a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)

=\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\sin \theta \cos \theta+\cos ^{2} \theta\right)}{\sin \theta \times \cos \theta(\sin \theta-\cos \theta)}

Use the identity: sin²θ+cos²θ=1

=\frac{1+\sin \theta \cos \theta}{\sin \theta \times \cos \theta}\\=\frac{1}{\sin \theta \times \cos \theta}+\frac{\sin \theta \cos \theta}{\sin \theta \times \cos \theta}=1+\sec \theta \times \csc \theta

LHS=RHS

Hence, proved

#Learn more

Cos theta/1-tan theta + sin theta/1-cot theta

brainly.in/question/3581222

Similar questions