Tan theta/ 1- cot theta + cot theta /1 - tan theta
Answers
Answered by
0
Answer:
Given,
Tan∅/ 1- cot∅ + cot∅/1 - tan∅
we write as,
sin²∅/[cos∅(sin∅-cos∅)] + cos²∅/[sin∅(cos∅-sin∅)]
=>1/(sin∅-cos∅)[sin²∅/cos∅ - cos²∅/sin∅]
=>1/(sin∅-cos∅)[(sin³∅-cos³∅)/cos∅.sin∅]
we know that
(a³-b³)= (a-b)(a²+b²+ab)
then
=> 1/(sin∅-cos∅)[(sin∅-cos∅)(sin²∅+cos²∅+sin∅.cos∅)/cos∅.sin∅]
now cancel (sin∅-cos∅) then we get
=> (sin²∅+cos²∅+sin∅.cos∅)/cos∅.sin∅
=> tan∅+cot∅+1.... (by simplification)
If you solve your copy, then you will understand well.
Answered by
0
Answer:
Your answer attached in the photo
Attachments:
Similar questions