Math, asked by rajeshhb762, 1 year ago

Tan theta /1-cot theta +cot theta /1-tan theta=sec theta ×cosec theta +1

Answers

Answered by nitthesh7
9
tanФ/1-cotФ + cotФ/1-tanФ = secФcosecФ + 1

Taking LHS
   = tanФ/1-cotФ + cotФ/1-tanФ
Changing cotФ = 1/tanФ
  = tanФ/1-1/tanФ + cotФ/1-tanФ
  = tan²Ф/tanФ-1 + cotФ/1-tanФ
Changing Sign of 1-tanФ = -(tanФ-1)
  = tan²Ф/tanФ-1 - /tanФ-1
  = tan²Ф - cotФ/tanФ-1
Changing cotФ = 1/tanФ
  = tan²Ф-1/tanФ ÷ tanФ-1
  = tan³Ф-1/tanФ(tanФ-1)
As a³-b³=(a-b)(a²+b²+ab)
  = (tanФ-1)(tan²Ф+1+tanФ)/(tanФ-1)tanФ
Cancelling (tanФ-1) 
  = (tan²Ф+1+tanФ)/tanФ
As 1+tan²Ф=sec²Ф
  = sec²Ф+tanФ/tanФ
Also sec²Ф=1/cos²Ф   and tanФ=sinФ/cosФ
  = 1/cos²Ф ÷ sinФ/cosФ+tanФ/tanФ
  = 1/cos²Ф × cosФ/sinФ + 1
  = secФcosecФ+1  = RHS

:) Hope this Helps !!!

nitthesh7: if it helped u a lot pls mark it as brainliest
rajeshhb762: Please absorbs last three steps
rajeshhb762: Cos theta /sin theta is cot theta
nitthesh7: as sec^2 theta / tan theta +1 then making it as 1/cos^2 theta = sec^2 theta and 1/tan theta = cot theta 1/cos^2 theta * cos theta/sin theta+1 1/cos theta * 1/sin theta
nitthesh7: then at last sec theta * cosec theta + 1 as 1/cos theta = sec theta and 1/sin theta = cosec theta
nitthesh7: Tq for brainliest
Answered by Anonymous
1

GIVEN:-

 \sf  \frac{ \tan \theta}{1 -  cot\theta }  +  \frac{  \cot \theta}{ 1 -  \tan \theta}  = 1 +  \sec \theta \cosec  \theta

TO FIND:-

 \tt lhs = rhs

SOLUTION:-

 \tt lhs \ratio  -

 \sf  \frac{ \tan \theta}{1 -  cot\theta }  +  \frac{  \cot \theta}{ 1 -  \tan \theta}

 \tt  =  \frac{ \frac{ \sin \theta  }{ \cos\theta } }{1 -  \frac{\cos\theta}{\sin \theta}  }  +    \frac{\frac{\cos\theta}{\sin \theta}  }{1 - \frac{ \sin \theta  }{ \cos\theta }}

 \tt =   \frac{ \frac{ \sin \theta  }{ \cos\theta } }{ \frac{ \sin \theta- \cos\theta}{  \sin \theta}  }  +    \frac{\frac{\cos\theta}{\sin \theta}  }{ \frac{  \cos\theta  -  \sin \theta  }{ \cos\theta }}

 \tt  =  \frac{ \sin \theta   }{ \cos \theta  }  \times  \frac{ \sin \theta  }{(\sin \theta - \cos \theta )   }  +  \frac{\cos \theta }{\sin \theta}  \times \frac{  \cos  \theta  }{( \cos  \theta -   \sin \theta )   }

 \tt =  \frac{  { \sin}^{2}\theta}{ \cos \theta( \sin \theta -  \cos \theta)  }  -  \frac{ { \cos }^{2}  \theta }{ \sin \theta( \sin \theta -  \cos \theta )    }

 \tt  =  \frac{1}{( \sin \theta  -  \cos \theta) } [ \frac{ { \sin}^{2}  \theta }{ \cos \theta  }  -  \frac{ { \cos }^{2}  \theta}{ \sin \theta  } ]

 \tt  =  \frac{1}{( \sin \theta  -  \cos \theta) } [    \frac{ { \sin}^{3  } \theta -  { \cos }^{3} \theta  }{ \sin \theta \cos \theta  }  ]

 \tt  =  \frac{1}{( \sin \theta  -  \cos \theta) } [   \frac{( \sin \theta -  \cos \theta)( { \sin}^{2}  \theta +  { \cos }^{2}    \theta +  \sin \theta \cos \theta )}{ \sin \theta \cos \theta    }   ]

 \tt  = \frac{(1 +  \sin \theta \cos \theta)}{( \sin \theta \cos \theta)}  =  \frac{1}{ \sin \theta \cos \theta  }  +  \frac{( \sin \theta \cos \theta)   }{( \sin \theta \cos \theta)  }

 =  \sec \theta \cosec \theta + 1

 = rhs

Similar questions