Math, asked by sachupatil2013, 4 months ago

tan theta+1/tan theta=2 then prove that tan^theta+1/tan^theta=2​

Answers

Answered by beststudent1
0

Answer:

Answer: The value of \bold{\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=2}tan

2

θ+

tan

2

θ

1

=2

Given: \tan \theta+\frac{1}{\tan \theta}=2 \ldots(1)tanθ+

tanθ

1

=2…(1)

To find: \tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}tan

2

θ+

tan

2

θ

1

Solution:

We know that by formula, (a+b)^{2}=a^{2}+b^{2}+2ab(a+b)

2

=a

2

+b

2

+2ab

Hence use the above formula to find \tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}tan

2

θ+

tan

2

θ

1

\begin{gathered}\begin{array}{l}{\left(\tan \theta+\frac{1}{\tan \theta}\right)^{2}=\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}+2 \times \tan \theta \times \frac{1}{\tan \theta}} \\\\ {2^{2}=\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}+2 \times 1} \\ \\{4=\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}+2} \\\\ {\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=4-2} \\\\ {\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=2}\end{array}\end{gathered}

(tanθ+

tanθ

1

)

2

=tan

2

θ+

tan

2

θ

1

+2×tanθ×

tanθ

1

2

2

=tan

2

θ+

tan

2

θ

1

+2×1

4=tan

2

θ+

tan

2

θ

1

+2

tan

2

θ+

tan

2

θ

1

=4−2

tan

2

θ+

tan

2

θ

1

=2

Similar questions