Math, asked by Maujkrdi, 1 month ago

tan theta+1/tan theta=
plz tell its urgent​

Answers

Answered by pranatibeherdalai91
0

Answer:

LHS = tan\theta+\frac{1}{tan\theta}tanθ+

tanθ

1

/* LCM = tan\thetatanθ */

= \frac{(tan^{2}\theta+1)}{tan\theta}

tanθ

(tan

2

θ+1)

= \frac{sec^{2}\theta}{tan\theta}

tanθ

sec

2

θ

/* By Trigonometric identity:*/

\boxed{1+tan^{2}\theta = sec^{2}\theta}

1+tan

2

θ=sec

2

θ

= \frac{\frac{1}{cos^{2}\theta}}{\frac{sin\theta}{cos\theta}}

cosθ

sinθ

cos

2

θ

1

= \frac{1}{sin\theta cos\theta}

sinθcosθ

1

= \frac{1}{sin\theta}\times\frac{1}{cos\theta}

sinθ

1

×

cosθ

1

= cosec\theta sec\thetacosecθsecθ

________________________

Since ,

i) \frac{1}{sin\theta} = cosec\theta

sinθ

1

=cosecθ

ii)\frac{1}{cos\theta} = sec\theta

cosθ

1

=secθ

Answered by chiamac19
0

 \tan(θ)  +  \frac{1}{ \tan(θ)}

 \frac{ \tan^{2} (θ)  + 1}{ \tan(θ) }

 \frac{ \sec^{2} (θ) }{ \tan(θ) }

PLEASE MARK BRAINLIEST...

Similar questions