Math, asked by sreekumarcv03, 11 months ago

tan theta/1-tantheta -cottheta/1-cottheta = costheta + sintheta/ costheta-sinthetaa

Answers

Answered by vanshgenius2004
5

Please refer to the attachment for your answer .

Attachments:
Answered by ashishks1912
2

Given that the  trignometric equation is \frac{tan\theta}{1-tan\theta}-\frac{cot\theta}{1-cot\theta}=\frac{cos\theta+sin\theta}{cos\theta-sin\theta}

To prove the equivalent property for the given trignometric equation :

Solution:

That is to prove that LHS=RHS

Now taking the LHS:

Simplifying the expression as below :

\frac{tan\theta}{1-tan\theta}-\frac{cot\theta}{1-cot\theta}

Here by using the trignometric identities:

( tanx=\frac{sinx}{cosx} and cotx=\frac{cosx}{sinx} )

=\frac{\frac{sin\theta}{cos\theta}}{1-\frac{sin\theta}{cos\theta}}-\frac{\frac{cos\theta}{sin\theta}}{1-\frac{cos\theta}{sin\theta}}

=\frac{\frac{sin\theta}{cos\theta}}{\frac{cos\theta-sin\theta}{cos\theta}}-\frac{\frac{cos\theta}{sin\theta}}{\frac{sin\theta-cos\theta}{sin\theta}}

=\frac{sin\theta}{cos\theta}\times \frac{cos\theta}{cos\theta-sin\theta}-\frac{cos\theta}{sin\theta}\times \frac{sin\theta}{sin\theta-cos\theta}

=\frac{sin\theta}{cos\theta-sin\theta}-\frac{cos\theta}{sin\theta-cos\theta}

=\frac{sin\theta}{cos\theta-sin\theta}-\frac{cos\theta}{-(cos\theta-sin\theta)}

=\frac{sin\theta}{cos\theta-sin\theta}+\frac{cos\theta}{cos\theta-sin\theta}

=\frac{sin\theta+cos\theta}{cos\theta-sin\theta} ( by taking LCM )

Rewritting we get

=\frac{cos\theta+sin\theta}{cos\theta-sin\theta}

= RHS

Therefore we get that LHS=RHS

Hence \frac{tan\theta}{1-tan\theta}-\frac{cot\theta}{1-cot\theta}=\frac{cos\theta+sin\theta}{cos\theta-sin\theta}

Hence the given trignometric equation \frac{tan\theta}{1-tan\theta}-\frac{cot\theta}{1-cot\theta}=\frac{cos\theta+sin\theta}{cos\theta-sin\theta} is proved .

Similar questions