Math, asked by sandhyapachoure31192, 4 months ago

tan theta = 3/4 , find the value of cos theta + sin theta/cos theta- sin theta ?​

Answers

Answered by BrainlyPopularman
12

GIVEN :

• tan(θ) = ¾

TO FIND :

 \\\implies\bf Value\:\:of\:\:\dfrac{ \cos( \theta) +  \sin( \theta) }{\cos( \theta) -  \sin( \theta)} =?\\

SOLUTION :

 \\\implies\bf  \tan( \theta) = \dfrac{3}{4} \\

• We should write this as –

 \\\implies\bf \dfrac{\sin( \theta)}{\cos( \theta)}= \dfrac{3}{4} \\

• We know that –

 \\\longrightarrow \red{\bf \sin^{2}( \theta) + \cos^{2} ( \theta) = 1}\\

• So that –

 \\\implies\bf \dfrac{\sin( \theta)}{ \sqrt{1 - \sin^{2} ( \theta)}}= \dfrac{3}{4} \\

• Square on both side –

 \\\implies\bf \left[\dfrac{\sin( \theta)}{ \sqrt{1 - \sin^{2} ( \theta)}} \right]^{2} =  \left[\dfrac{3}{4} \right]^{2} \\

 \\\implies\bf \dfrac{\sin^{2} ( \theta)}{1 - \sin^{2} ( \theta)}=  \dfrac{9}{16}\\

 \\\implies\bf16\sin^{2} ( \theta)=  9 \{1 - \sin^{2} ( \theta) \}\\

 \\\implies\bf16\sin^{2} ( \theta)=  9 - 9\sin^{2} ( \theta)\\

 \\\implies\bf16\sin^{2} ( \theta) + 9\sin^{2} ( \theta)=  9\\

 \\\implies\bf25\sin^{2} ( \theta)=  9\\

 \\\implies\bf\sin^{2} ( \theta)= \dfrac{9}{25}\\

 \\\implies \large \red{ \boxed{\bf\sin ( \theta)= \dfrac{3}{5}}}\\

• And –

 \\\implies\bf\cos( \theta)=  \sqrt{1 - \sin^{2} ( \theta)} \\

 \\\implies\bf\cos( \theta)=  \sqrt{1 - \dfrac{9}{25} } \\

 \\\implies\bf\cos( \theta)=  \sqrt{ \dfrac{25 - 9}{25} } \\

 \\\implies\bf\cos( \theta)=  \sqrt{ \dfrac{16}{25} } \\

 \\\implies \large \red{ \boxed{\bf\cos( \theta)= \dfrac{4}{5}}}\\

• Now let's find –

 \\\implies\bf \dfrac{ \cos( \theta) +  \sin( \theta) }{\cos( \theta) -  \sin( \theta)} =\dfrac{\dfrac{4}{5}+  \dfrac{3}{5}}{\dfrac{4}{5}-\dfrac{3}{5}} \\

 \\\implies\bf \dfrac{ \cos( \theta) +  \sin( \theta) }{\cos( \theta) -  \sin( \theta)} =\dfrac{\dfrac{4+3}{5}}{\dfrac{4 - 3}{5}}\\

 \\\implies\bf \dfrac{ \cos( \theta) +  \sin( \theta) }{\cos( \theta) -  \sin( \theta)} =\dfrac{4+3}{4 - 3}\\

 \\\implies\bf \dfrac{ \cos( \theta) +  \sin( \theta) }{\cos( \theta) -  \sin( \theta)} =\dfrac{7}{1}\\

 \\\implies\bf \dfrac{ \cos( \theta) +  \sin( \theta) }{\cos( \theta) -  \sin( \theta)} =7\\

• Hence , The value of \bf \dfrac{ \cos( \theta) +  \sin( \theta) }{\cos( \theta) -  \sin( \theta)} =7.


BrainlyHero420: Perfect bro :)
Anonymous: Nice as always (:
BrainlyPopularman: Thanks
Answered by anshu24497
6

\large\bf{\color{royalblue}{GIVEN :–}}

  • tan(θ) = ¾

\large\bf{\color{purple}{TO FIND :–}}

\begin{gathered}\\\implies\bf Value\:\:of\:\:\dfrac{ \cos( \theta) + \sin( \theta) }{\cos( \theta) - \sin( \theta)} =?\\\end{gathered}

\large\bf{\pink{SOLUTION :–}}

\begin{gathered}\\\implies\bf \tan( \theta) = \dfrac{3}{4} \\\end{gathered}

  • We should write this as –

\begin{gathered}\\\implies\bf \dfrac{\sin( \theta)}{\cos( \theta)}= \dfrac{3}{4} \\\end{gathered}

  • We know that –

\begin{gathered}\\\longrightarrow \red{\bf \sin^{2}( \theta) + \cos^{2} ( \theta) = 1}\\\end{gathered}

  • So that –

\begin{gathered}\\\implies\bf \dfrac{\sin( \theta)}{ \sqrt{1 - \sin^{2} ( \theta)}}= \dfrac{3}{4} \\\end{gathered}

  • Square on both side –

\begin{gathered}\\\implies\bf [\dfrac{\sin( \theta)}{ \sqrt{1 - \sin^{2} ( \theta)}} ]^{2} = [\dfrac{3}{4} ]^{2} \\\end{gathered}

\begin{gathered}\\\implies\bf \dfrac{\sin^{2} ( \theta)}{1 - \sin^{2} ( \theta)}= \dfrac{9}{16}\\\end{gathered}

\begin{gathered}\\\implies\bf16\sin^{2} ( \theta)= 9 \{1 - \sin^{2} ( \theta) \}\\\end{gathered}

\begin{gathered}\\\implies\bf16\sin^{2} ( \theta)= 9 - 9\sin^{2} ( \theta)\\\end{gathered}

\begin{gathered}\\\implies\bf16\sin^{2} ( \theta) + 9\sin^{2} ( \theta)= 9\\\end{gathered}

\begin{gathered}\\\implies\bf25\sin^{2} ( \theta)= 9\\\end{gathered}

\begin{gathered}\\\implies\bf\sin^{2} ( \theta)= \dfrac{9}{25}\\\end{gathered}

\begin{gathered}\\\implies \large \red{ \boxed{\bf\sin ( \theta)= \dfrac{3}{5}}}\\\end{gathered}

  • And –

\begin{gathered}\\\implies\bf\cos( \theta)= \sqrt{1 - \sin^{2} ( \theta)} \\\end{gathered}

\begin{gathered}\\\implies\bf\cos( \theta)= \sqrt{1 - \dfrac{9}{25} } \\\end{gathered}

\begin{gathered}\\\implies\bf\cos( \theta)= \sqrt{ \dfrac{25 - 9}{25} } \\\end{gathered}


Anonymous: inbx me plz
Similar questions
Math, 10 months ago