(tan theta - cot theta) ^ +2 =sec^ theta +cosec^ theta -2
Answers
Answered by
0
Answer:
Step-by-step explanation:
Answered by
0
Answer:
(Tanθ - Cotθ)² + 2 = Sec²θ + Cosec²θ - 2
Step-by-step explanation:
(tan theta - cot theta) ^ +2 =sec^ theta +cosec^ theta -2
=> (Tanθ - Cotθ)² + 2 = Sec²θ + Cosec²θ - 2
=> Tan²θ + Cot²θ - 2TanθCotθ + 2 = Sec²θ + Cosec²θ - 2
=> Tan²θ + Cot²θ - 2 + 2 = Sec²θ + Cosec²θ - 2
=> Tan²θ + Cot²θ = Sec²θ + Cosec²θ - 2
=> Sin²θ/Cos²θ + Cos²θ/Sin²θ = Sec²θ + Cosec²θ - 2
=>( 1 - Cos²θ)/Cos²θ + (1 - Sin²θ)/Sin²θ = Sec²θ + Cosec²θ - 2
=> 1/Cos²θ - 1 + 1/Sin²θ - 1 =Sec²θ + Cosec²θ - 2
=> Sec²θ + Cosec²θ - 2 = Sec²θ + Cosec²θ - 2
=> LHS = RHS
QED
Proved
(Tanθ - Cotθ)² + 2 = Sec²θ + Cosec²θ - 2
Similar questions
English,
6 months ago
Math,
6 months ago
Math,
6 months ago
Physics,
1 year ago
Social Sciences,
1 year ago