Math, asked by bharti6670, 11 months ago

tan theta + cot theta = 2 then find tan²theta + cot²theta = ? ​

Answers

Answered by writetochinchu
2

Answer:

Let Tan theta be x

As Cot = 1/tan

1/tan = 1/x

x + 1/x = 2

(x+1/x) ^2 = x^2 + 1/x^2 + 2

(2) ^2 = x^2 + 1/x^2 + 2

4-2 = x^2 + 1/x^2

2 = x^2+ + 1/x^2

Therefore,

Tan^2 theta + Cot^2 theta = 2

Answered by xxxmysterxxx
1

Answer:

Answer:

\begin{gathered}Value \: of \\ tan^{2}\theta+cot^{2}\theta = 2\end{gathered}

Valueof

tan

2

θ+cot

2

θ=2

Step-by-step explanation:

Given \: tan\theta+cot\theta=2\:---(1)Giventanθ+cotθ=2−−−(1)

/* On Squaring both sides of the equation, we get

\left(tan\theta+cot\theta\right)^{2}=2^{2}(tanθ+cotθ)

2

=2

2

\implies tan^{2}\theta+cot^{2}\theta+2 tan\theta cot\theta = 4⟹tan

2

θ+cot

2

θ+2tanθcotθ=4

\implies tan^{2}\theta+cot^{2}\theta+2 \times 1 = 4⟹tan

2

θ+cot

2

θ+2×1=4

/* tanAcotA = 1 */

\implies tan^{2}\theta+cot^{2}\theta = 4-2⟹tan

2

θ+cot

2

θ=4−2

\implies tan^{2}\theta+cot^{2}\theta = 2⟹tan

2

θ+cot

2

θ=2

Therefore,

tan^{2}\theta+cot^{2}\theta = 2tan

2

θ+cot

2

θ=2

•••♪

Similar questions