Math, asked by aditya8047, 1 year ago

(tan theta + cot theta + sec theta )×(tan theta +cot theta -sec theta) =cosec^2 theta. Prove it​

Answers

Answered by ujalasingh385
4

Answer:-

(tanθ+cotθ+secθ)×(tanθ+cotθ-secθ)=cosec^{2}θ

Step-by-step explanation:

To proof-(tanθ+cotθ+secθ)(tanθ+cotθ-secθ)=cosec^{2}\theta

Taking Left Hand Side i.e L.H.S

=(tanθ+cotθ+secθ)(tanθ+cotθ-secθ)

=tanθ(tanθ+cotθ-secθ)+cotθ(tanθ+cotθ-secθ)+secθ(tanθ+cotθ-secθ)

=tan^{2}\theta+tanθcotθ-tanθsecθ+cotθtanθ-cotθsecθ+cot^{2}\theta+secθtanθ+secθcotθ-sec^{2}\theta

=tan^{2}\theta+tan\theta\times \frac{1}{tan\theta}-tanθsecθ+cot\theta\times \frac{1}{cot\theta}+cot^{2}\theta-cotθsecθ+secθtanθ+secθcotθ-sec^{2}\theta

Using\ 1+tan^{2}\theta=sec^{2}\theta

Using\ 1+cot^{2}\theta=cosec^\theta

=1+tan^{2}\theta-tanθsecθ+1+cot^{2}\theta-cotθsecθ+secθtanθ+secθcotθ-sec^{2}\theta

=sec^{2}\theta-tanθsecθ+cosec^{2}\theta-cotθsecθ+secθtanθ+secθcotθ-sec^{2}\theta

=cosec^{2}\theta

=R.H.S

Hence L.H.S=R.H.S

Similar questions