Math, asked by ahmedapple2621, 11 months ago

Tan theta - cot theta├╖sin theta x cos theta = sec^2 theta- cosec^2theta
Prove that

Answers

Answered by ashishks1912
4

GIVEN :

The trignometric equation \frac{tan\theta-cot\theta}{sin\theta cos\theta}=sec^2\theta-cosec^2\theta

TO PROVE :

The given trignometric equation is true.

SOLUTION :

Given trignometric equation is \frac{tan\theta-cot\theta}{sin\theta cos\theta}=sec^2\theta-cosec^2\theta

To prove that the given trignometric equation is true.

That is to prove that LHS=RHS

Now taking LHS \frac{tan\theta-cot\theta}{sin\theta cos\theta}

\frac{tan\theta-cot\theta}{sin\theta cos\theta}

=\frac{tan\theta}{sin\theta cos\theta}-\frac{cot\theta}{sin\theta cos\theta}

By using the trignometric formula:

tanx=\frac{sinx}{cosx}

=\frac{\frac{sin\theta}{cos\theta}}{sin\theta cos\theta}-\frac{\frac{cos\theta}{sin\theta}}{sin\theta cos\theta}

=\frac{sin\theta}{cos\theta(sin\theta cos\theta)}-\frac{cos\theta}{sin\theta(sin\theta cos\theta)}

=\frac{1}{cos^2\theta}-\frac{1}{sin^2\theta}

By using the trignometric formulae :

i) \frac{1}{sinx}=cosecx

ii) \frac{1}{cosx}=secx

=sec^2\theta-cosec^2\theta =RHS

LHS = RHS

\frac{tan\theta-cot\theta}{sin\theta cos\theta}=sec^2\theta-cosec^2\theta

∴ the given trignometric equation is true.

Hence proved.

Similar questions