Tan theta equal to 13/12 find 1-sin theta/1plus sin theta
Answers
Answered by
1
Hii friend,
Tan theta = 13/12 = Perpendicular/Base
Perpendicular = 13 , Base = 12 , Hypotenuse = ?
We know that,
(H)² = (B)² + (P)²
(H)² = (12)² + (13)²
(H)² = 144 + 169
(H)² = 313
H = ✓313
Sin theta = Perpendicular/Hypotenuse = 13/✓313
Therefore,
1+ Sin theta / 1 - Sin theta = 1 + 13/✓313 / 1 - 13/✓313
= ✓313 + 1 / ✓313 -1
= ✓313 + 1 / ✓313 -1 × ✓313 +1 / ✓313 +1
= (✓313+1)² / (✓313)² - (13)²
= (✓313)² + (1)² + 2 × ✓313 × 1 / 313 -13
Solve this you will get your answer.
HOPE YOU GOT IT...... :-)
Tan theta = 13/12 = Perpendicular/Base
Perpendicular = 13 , Base = 12 , Hypotenuse = ?
We know that,
(H)² = (B)² + (P)²
(H)² = (12)² + (13)²
(H)² = 144 + 169
(H)² = 313
H = ✓313
Sin theta = Perpendicular/Hypotenuse = 13/✓313
Therefore,
1+ Sin theta / 1 - Sin theta = 1 + 13/✓313 / 1 - 13/✓313
= ✓313 + 1 / ✓313 -1
= ✓313 + 1 / ✓313 -1 × ✓313 +1 / ✓313 +1
= (✓313+1)² / (✓313)² - (13)²
= (✓313)² + (1)² + 2 × ✓313 × 1 / 313 -13
Solve this you will get your answer.
HOPE YOU GOT IT...... :-)
Similar questions