Math, asked by salmaz35941, 1 year ago

Tan theta is 12/5 find 1+sin theta/ 1-sin theta

Answers

Answered by theking20
0

Given,

The value of tanθ = 12/5

To Find,

The value of (1+sinθ)/(1-sinθ)

Solution,

Since the value of tanθ is given to us

So,

tanθ = 12/5 = Perpendicular/Base

Now, by using the Pythagoras theorem

Hypotenuse = √(12²+5²) = 13

Now,

sinθ = Perpendicular/Hypotenuse = 12/13

So,

(1+sinθ)/(1-sinθ) = (1+12/13)/(1-12/13)

                         = (25/13)/(1/13)

                         = 25

Hence, the value of (1+sinθ)/(1-sinθ) = 25.

Answered by chachi4201
10

A theorem in geometry: the square of the length of the hypotenuse of a right triangle equals the sum of the squares of the lengths of the other two sides.

tan\theta =\frac{perpendicular}{base}=\frac{12}{5}

AC^2=(AB)^2+(BC)^2

=(12)^2+(5)^2

=144+25

=169

AC=13

\frac{1+sin\theta}{1-sin\theta }

where sin\theta=\frac{12}{13}

\frac{1+\frac{12}{13} }{1-\frac{12}{13} } =\frac{\frac{13+12}{13} }{\frac{13-12}{13} }

=\frac{\frac{25}{13} }{\frac{1}{13} } =\frac{25\times13}{13\times 1}

=25

Attachments:
Similar questions