Math, asked by lanicabraggs67, 19 days ago

tan theta is 5/12 , 1 + sin a 1. If tan e If tan 0 =--. then find the value of 5 1 - sin e​

Attachments:

Answers

Answered by NITESH761
2

Answer:

\rm 25

Step-by-step explanation:

We have,

\tan θ = \dfrac{12}{5}

\tan ^2 θ = \dfrac{144}{25}

\tan ^2 θ +1 = \dfrac{144}{25} +1

\sec ^2 θ  = \dfrac{144+25}{25}

\sec ^2 θ  = \dfrac{169}{25}

\sec θ  = \sqrt{\dfrac{169}{25} }

\sec θ  = \dfrac{13}{5}

\cos θ  = \dfrac{5}{13}

\cos ^2 θ  = \dfrac{25}{169}

1- \cos ^2 θ  = 1- \dfrac{25}{169}

1- \cos ^2 θ  =  \dfrac{169-25}{169}

1- \cos ^2 θ  =  \dfrac{144}{169}

\sin ^2 θ  =  \dfrac{144}{169}

\sin θ  =  \sqrt{\dfrac{144}{169}}

\sin θ  =  \dfrac{12}{13}

\dfrac{1+\sin θ}{1- \sin θ}  =  \dfrac{1+ \frac{12}{13}}{1-\frac{12}{13}}

\implies  \dfrac{ \dfrac{13+12}{13}}{\dfrac{13-12}{13}}

\implies  \dfrac{ 13+12}{13-12}

\implies  \dfrac{ 25}{1}

: \implies  25

Similar questions