Math, asked by gopal2949, 1 year ago

(tan theta /sec theta - 1)-(sin theta /1+cos theta) =2 cot theta ​

Answers

Answered by ashishks1912
18

GIVEN :

The equation is \frac{tan\theta}{sec\theta-1}-\frac{sin\theta}{1+cos\theta}=2cot\theta

TO PROVE :

The given equation \frac{tan\theta}{sec\theta-1}-\frac{sin\theta}{1+cos\theta}=2cot\theta is true

SOLUTION :

From the given equation is true

That is prove that LHS = RHS

Now taking LHS

\frac{tan\theta}{sec\theta-1}-\frac{sin\theta}{1+cos\theta}

By using the trignometric identity :

secx=\frac{1}{cosx}

=\frac{\frac{sin\theta}{cos\theta}}{\frac{1}{cos\theta}-1}-\frac{sin\theta}{1+cos\theta}

=\frac{\frac{sin\theta}{cos\theta}}{\frac{1-cos\theta}{cos\theta}}-\frac{sin\theta}{1+cos\theta}

=\frac{sin\theta}{cos\theta}}\times (\frac{cos\theta}{1-cos\theta})-\frac{sin\theta}{1+cos\theta}

=\frac{sin\theta}{1-cos\theta}-\frac{sin\theta}{1+cos\theta}

=\frac{sin\theta(1+cos\theta)-sin\theta(1-cos\theta)}{(1-cos\theta)(1+cos\theta)}

By using the algebraic identity :

(a+b)(a-b)-a^2-b^2

=\frac{sin\theta+sin\theta cos\theta-sin\theta+sin\theta cos\theta}{1^2-cos^2\theta}

Adding the like terms

=\frac{2sin\theta cos\theta}{sin^2\theta}

=2(\frac{cos\theta}{sin\theta})

By using the trignometric identity :

cotx=\frac{cos}{sinx}

=2cot\theta=RHS

∴ LHS = RHS

∴ the equation \frac{tan\theta}{sec\theta-1}-\frac{sin\theta}{1+cos\theta}=2cot\theta is true

Hence proved.

Similar questions