Math, asked by indusingh11798, 29 days ago

tan theta+sec theta-1/ tan theta - sec theta + 1 = 1+sin theta/cos theta please be fast!!​

Answers

Answered by abhi569
2

 \sf{Multiply \:  and \:  divide  \: by \:  tanA + secA - 1}

\implies  \sf{  \frac{tanA +( secA  - 1)}{ tanA  -(secA    - 1)} \times  \frac{tanA +( secA  - 1)}{tanA +( secA  - 1)}} \\  \\  \implies \sf{ \frac{(tanA +( secA  - 1)){}^{2} }{(tanA  - ( secA  - 1))(tanA +( secA  - 1))} } \\  \\ \implies \sf{ \frac{(tanA +( secA  - 1)) {}^{2} }{tan {}^{2} A  - (sec A - 1){}^{2} } } \\  \\  \implies \sf{ \frac{tan {}^{2} A +( sec {}^{2}A + 1 - 2secA  ) + 2tanA(secA - 1)}{tan {}^{2}A - (sec {}^{2}A + 1 -2 secA) }  } \\  \\  \implies\sf{ \frac{tan {}^{2} A +1 +sec {}^{2} A- 2secA + 2tanAsecA -2tanA}{tan {}^{2}A - sec {}^{2}A  - 1  + 2 secA }  } \\  \\  \implies \sf{ \frac{  sec {}^{2}A +sec {}^{2}A  - 2secA + 2sec AtanA - 2tanA}{ - 1 - 1 + 2secA }} \\  \\ \implies \sf{ \frac{  sec {}^{2}A  - sec + sec AtanA - tanA}{secA - 1}} \\  \\  \implies \sf{ \frac{ secA(secA - 1) + tan A(secA - 1)\: }{secA - 1}} \\  \\  \sf{ \implies  \frac{(secA - 1)(secA + tanA)}{(secA - 1)} } \\  \\  \implies \sf{secA + tanA} \\  \\  \implies \sf{  \frac{1}{cosA} +  \frac{sinA}{cosA}  \: } \\  \\   \implies \sf{ \frac{1 + sinA}{cosA}}

\\

\sf{Using:}

\sf{line3: \: (a+b)(a-b)=a^2-b^2}

\sf{line4: \: (a+b)^2=a^2+b^2+2ab \: for\:numerator}

\sf{line5: \: tan^2A + 1 = sec^2 A}

\sf{line6: \: tan^2A - sec^2A = - 1}

\sf{line7: \: taking \:common (2), cancelling\: it}

\sf{*better\:to\:be\:seen\:through\:browser-desktop-mode}

Similar questions