Math, asked by rustrandom302, 16 days ago

tan theta + sec theta-1/tan theta - sec theta+1 = 1+sin theta/cos theta​

Answers

Answered by sunitaqueen
2

Answer:

To Prove:

tanθ−secθ+1

tanθ+secθ−1

=

cosθ

1+sinθ

Solution:

L.H.S =

tanθ−secθ+1

tanθ+secθ−1

We can write, sec

2

θ−tan

2

θ=1

=

tanθ−secθ+1

tanθ+secθ−(sec

2

θ−tan

2

θ)

=

tanθ−secθ+1

tanθ+secθ−(secθ−tanθ)(secθ+tanθ)

=

tanθ−secθ+1

(tanθ+secθ){1−(secθ−tanθ)}

=

tanθ−secθ+1

(tanθ+secθ){1−secθ+tanθ}

=tanθ+secθ

=

cosθ

sinθ

+

cosθ

1

=

cosθ

1+sinθ

= R.H.S

since L.H.S = R.H.S

tanθ−secθ+1

tanθ+secθ−1

=

cosθ

1+sinθ

Hence Proved.

Answered by krishpmlak
0

Answer:

Step-by-step explanation:

L.H.S. = ( tan θ + sec θ - 1 ) / ( tan θ - sec θ + 1 )

= ( tan θ - 1 + sec θ ) / ( tanθ + 1 - sec θ )

=[ tan θ - ( 1 - sec θ ) ] / [tan θ + ( 1 - sec θ ) ]

= [ tan θ - ( 1 - sec θ ) ] × [ (tan θ - ( 1 - sec θ )] / [tan θ + ( 1 - sec θ )] × [tan θ - ( 1- sec θ ) ] ( ∵ Rationalising the denominatdenominator)

= [ tan θ - ( 1 - sec θ ) ]² / [ tan² θ - ( 1 - sec θ )² ] [∵( a-b)² = (a-b)(a-b) ; a²-b² = (a-b) (a+b) ]

= [ tan²θ + ( 1 - sec θ)² - 2 ( tan θ ) ( 1 - sec θ ) ] / [tan² θ - ( 1 + sec² θ + 2sec θ ) ]

[ ∵ ( a +b )² = a² + b² + 2ab ]

= [ tan² θ + 1 + sec² θ - 2 sec θ - 2 tanθ + 2 tan θ sec θ ] / [ tan² θ - 1 - sec² θ + 2 sec θ ]

= [ sec² θ + sec² θ - 2 sec θ - 2 tan θ + 2 tan θ sec θ ] / [ tan² θ - sec² θ - 1 + 2 sec θ ] [∵ sec²θ = tan² θ + 1 ]

= [ 2 sec² θ + 2tan θ sec θ - 2 sec θ - 2 tan θ ] / [ - 1 - 1 + 2 sec θ ]

[ ∵tan² θ - sec² θ = - 1 ]

= [ 2 sec θ ( sec θ + tan θ ) - 2 ( sec θ + tan θ ) ] / [ - 2 + 2 sec θ ]

= [ ( sec θ + tan θ ) ( 2 sec θ - 2 ) ] / [ 2 sec θ - 2 ]

= sec θ + tan θ

= ( 1 / cos θ ) + ( sin θ / cos θ ) [∵sec θ = 1 / cos θ ; tan θ = sin θ / cos θ ]

= ( 1 + sin θ ) / cos θ ( ∵ lcm is cos θ )

= R.H.S.

L.H.S. = R.H.S.

Hence, it is proved.

Similar questions