Math, asked by mukundkale, 1 year ago

Tan theta+sec theta-1/tan theta-

sec theta+1=1+SinTheta/cos theta

Answers

Answered by chandresh126
640

Answer:

Hey Mate,

We have to prove LHS = RHS

LHS = ( tan\theta+sec\theta-1 ) / ( tan\theta-sec\theta+1 )

RHS = (sin\theta+1) / cos\theta

Lets Start from LHS

LHS = ( tan\theta+sec\theta-1 ) / (tan\theta-sec\theta+1 )

=  ( tan\theta+sec\theta-(sec^{2}\theta-tan^2\theta )) / ( tan\theta-sec\theta+1 )

= (tan\theta+sec\theta-[(sec\theta+tan\theta)(sec\theta-tan\theta)])/(tan\theta-sec\theta+1 )

= (tan\theta+sec\theta[tan\theta-sec\theta+1]) / (tan\theta-sec\theta+1 )

= tan\theta+sec\theta

= [sin\theta/cos\theta] + [1/cos\theta]

= [(sin\theta+1) /cos\theta] = RHS

Hence Proved,

LHS=RHS

Answered by Anonymous
241
==================================

\underline\bold{\huge{SOLUTION \: :}}

==================================

Here, i am holding the "THETAS" as "A".

So, we can proceed our solution as under :

\boxed{L. H. S.}

(tan A + sec A - 1)/(tan A - sec A + 1)

= (tan A + sec A - sec²A + tan²A)/(tan A - sec A + 1)

= [tan A + sec A - {(sec A+tan A) (sec A - tan A)}]/[tan A - sec A + 1]

= [tan A + sec A (1 - sec A + tan A)]/(tan A - sec A + 1)

= tan A + sec A

= sin A/cos A + 1/cos A

= ( 1 + sin A ) / cos A

= \boxed{R. H. S.}

==================================

ULTIMATELY,

L.H.S. = R.H.S. (PROVED)

==================================
Similar questions