Math, asked by ankitjaiswal916163, 8 months ago

tan theta+sec theta-1/tan theta-sec theta+1​

Answers

Answered by shivjmtpl2012
0

Answer:

answer is -1

Step-by-step explanation:

solve it and u will get the answer

Answered by 8bvanshpandit
0

Step-by-step explanation:

Hey Mate,

We have to prove LHS = RHS

LHS = ( tan\theta+sec\theta-1 ) / ( tan\theta-sec\theta+1 )(tanθ+secθ−1)/(tanθ−secθ+1)

RHS = (sin\theta+1) / cos\theta(sinθ+1)/cosθ

Lets Start from LHS

LHS = ( tan\theta+sec\theta-1 ) / (tan\theta-sec\theta+1 )(tanθ+secθ−1)/(tanθ−secθ+1)

=  ( tan\theta+sec\theta-(sec^{2}\theta-tan^2\theta )) / ( tan\theta-sec\theta+1 )(tanθ+secθ−(sec2θ−tan2θ))/(tanθ−secθ+1)

= (tan\theta+sec\theta-[(sec\theta+tan\theta)(sec\theta-tan\theta)])/(tan\theta-sec\theta+1 )(tanθ+secθ−[(secθ+tanθ)(secθ−tanθ)])/(tanθ−secθ+1)

= (tan\theta+sec\theta[tan\theta-sec\theta+1]) / (tan\theta-sec\theta+1 )(tanθ+secθ[tanθ−secθ+1])/(tanθ−secθ+1)

= tan\theta+sec\thetatanθ+secθ

= [sin\theta/cos\theta] + [1/cos\theta][sinθ/cosθ]+[1/cosθ]

= [(sin\theta+1) /cos\theta][(sinθ+1)/cosθ] = RHS

Hence Proved,

Similar questions